100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Modelling Biological Systems (EZO-23306)

Rating
-
Sold
-
Pages
25
Uploaded on
01-01-2021
Written in
2020/2021

Summary in English of the course modelling biological systems

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 1, 2021
Number of pages
25
Written in
2020/2021
Type
Summary

Subjects

Content preview

EZO-23306 Modelling biological systems
Week 1 Dissecting complex systems
Introduction lecture
Biological systems are complex, mathematics can make complexity manageable, and
mathematical models make the complexity predictable. System is a limited part of reality
that contains interrelated elements.
KC 1 Modelling
A model is a simplified representation of a system. There are three types of models, physical
model, conceptual model and mathematical model. This course focuses on making
conceptual models and converting them into mathematical models. We study models to
understand, simulate and predict systems. The tools we use for this are pen and paper,
mathematics and programming(python). To solve complex models we sketch, estimate,
divide and conquer. See Appendix A for basic calculus rules.

KC 2 Back of envelop considerations
Back of envelop calculations are small calculations that do not require a calculator or
programming. Estimate the order of magnitude. Proportionality is the relationship between
two quantities in which their ratio is constant, noted as x ∝ y. Dimensions are basic concepts
of physical measurements: length, time, mass. Units are definite magnitudes of a quantity:
mm, s, kg.




KC 3 Dynamic models
dN
Biological systems change over space or time, the rate of change is denoted as , which is related
dt
dN
to the population size (over time): N ( t ). The rate of change can be per individual: r or of an
Dt
dN
population: R*N, which gives the equation: =r∗N (t ) (exponential growth).
dt
dN
If a system is in equilibrium this means no change so =0,r∗N ( t )=0 , N ( t )=0.
dt
Logistic growth means the growth rate per individual is not constant, but depends on the population
N dN N
(
size, so you assume linear decrease. r → r 1−
K )

dt
=r∗N (1− ), K= the carrying capacity of
K
a system.

,KC 4 introduction Jupiter notebooks
Cells in code are in python language, and cells in markdown are in text.
 ##text makes a heading
 *text* makes text italic
 **text** makes text bold
 ***text*** makes text bold and italic
 $calculation$ for calculation in LaTeX on same line
 $$calculation$$ for calculation on separate lines
 $$ calculation\\calculation$$ for calculation on two lines
 $$\dfrac{…}{…}=…$$ for fractions ( on points are the numbers)
 $$..._...$$ is subscript
 $$...^…$$ is superscript
 $$\...$$ is for Greek letters (points is the exact name of Greek letter) (∝= propto)
(alpha, gamma, delta, mu, pi, rho, theta) (approx= ≈ , sqrt(…)=
√… , pm=±)
 \left( ... \right)for brackets spanning more than one line
Are introduced to Jupyter notebooks and markdown cells.
Jupyter is a loose acronym of Julia, Python and R. These programming languages were the
first target languages, but nowadays the notebook also supports many other languages.
Jupyter notebook is a document that consists of code, text, equations, images etc. It
provides a complete and self-contained record of a computation or model.

, Markdown cells are used to typeset text, when run they display the corresponding rich text.

Have refreshed your mathematics skills.
See appendix A for this and toolbox exercise 1.

Know how to simplify and divide a difficult problem.
1. Divide and conquer: organise the problem into smaller problems which you can
solve.
2. Estimate: have an idea of what kind of answer you expect for the problem.
3. Sketch: sketch the situation of the problem.

Understand the concept and application of proportionality.
Proportionality is a relationship between two quantities in which their ratio is constant. This
constant is called the proportionality constant, ∝ $\propto$

Understand the concept and application of a dimensional analysis.
A dimension is a measure of a physical quantity, such as length L, time T
or mass M. A unit is a definite magnitude of a quantity, such as meters,
grams etc. A dimensional analysis is used to see if the dimension on the
left and right side of an equal sign match.(so to see if the equation is
correct)

Understand the concept and application of an order of magnitude analysis.
Making an estimate can be useful for understanding the biological system and is useful to
check your model. Order of magnitude analysis uses the symbol O. Example of the distance
from Wageningen to Rotterdam, if we would call this distance d then we can write: d=O(100
km).

Are able to identify the different components of a model.
 Independent variable whose change is not influenced by other components of the
model, such as time and space
 State variable that describes the state of a system, such as population size
 Parameter: a constant that does not change under the influence of the state
variables or independent variables, example is rate of change.

Understand what a differential equation is and are able to analyse it graphically.
Differential equation is a mathematical equation that relates some function with its
derivatives. It describes the rate of change of a state variable as a function of the state
variable(s). In applications, the functions represent physical quantities (state variables), the
derivatives represent their rates of change, and the equation defines a relationship between
the two. You should understand from the graph that if the rate of change is positive the
state variable is increasing and if the rate of change is negative the state variable is
decreasing and if the rate of change is zero, the state variable does not change(local maxima
and minima).

Understand what an equilibrium is and what types of equilibria exist.
$4.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
marthelamain

Get to know the seller

Seller avatar
marthelamain Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
6 year
Number of followers
0
Documents
3
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions