d d
SOLUTIONS
,TableofContents
d d
1. Single-Degree-of-Freedom Systems d
2. Random Vibrationsd
3. Dynamic Response of SDOF Systems Using Numerical Methods
d d d d d d d
4. Systems with Several Degrees of Freedom
d d d d d
5. Equations of Motion of Continuous Systems
d d d d d
6. Vibration of Strings and Bars
d d d d
7. Beam Vibrations
d
8. Continuous Beams and Frames d d d
9. Vibrations of Plates d d
10. Vibration of Shells d d
11. Finite Elements and Time Integration Numerical Techniques
d d d d d d
12. Shock Spectra
d
, Chapter 1 d
1.1 Write the equations of motion for the one-degree-of-freedom systems shown in Figures1.72 (a) … (i). Assume
d d d d d d d d d d d d d d d
that the loading is in the form of a force P(t), a given displacement a(t), or a given rotation
d d d d d d d d d d d d d d d d d d d (t) as indicated in the
d d d d d d
d figure.
Figure 1.72 One-degree-of-freedom systems
d d d
@@SSee
isis
mmiciicsis
oolala
titoionn
, Solutions
(a) (b)
spring force = (3EI / L )u 3
( )
d d d d d d
spring force = 48EI / L3 u
d d d d d d
3EI
mu + d
u = P(t)
d d
48EI L3
mu + 3 u = P(t)
d d d d
L d
(c) (d)
spring force = 3EI / L3 u − 3EI / L2 (t)
d d d ( d d d ) ( d d d d )
d
spring force = 3EI / L3
d d d ( d d )(u −a)
d d d mu +d
3EI
d
d
u=
d d
3EI
(t)
d
L3 L2
3EI
mu +
L3
d (u − a) = 0
d
d d d d d
3EI 3EI
mu + u= a(t)
d d
d d d d
L3
L3
(e) (f)
spring force = (EA/ L)u
( ) ( )
d d d d d
EA spring force = 2 3EI / L3 u = 6EI / L3 u
d d d d d d d d d d d
mu + u = P(t)
d d
d d d d
6EI
L mu +d
u = P(t)
d d d
L3
@@SSee
isis
mmiciicsis
oolala
titoionn