100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Data Mining and Machine Learning: Fundamental Concepts and Algorithms 2nd Edition by Mohammed J. Zaki, Wagner Meira Jr All Chapters 1-22

Rating
-
Sold
-
Pages
660
Grade
A+
Uploaded on
06-10-2025
Written in
2025/2026

Solution Manual for Data Mining and Machine Learning: Fundamental Concepts and Algorithms 2nd Edition by Mohammed J. Zaki, Wagner Meira Jr

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Course

Document information

Uploaded on
October 6, 2025
Number of pages
660
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Data Mining and Analysis:
Fundamental Concepts and Algorithms

Mohammed J. Zaki
Wagner Meira Jr.

,CONTENTS i




Contents

Preface 1

1 Data Mining and Analysis 4
1.1 Data Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Data: Algebraic and Geometric View . . . . . . . . . . . . . . . . . . 7
1.3.1 Distance and Angle . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Mean and Total Variance . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Linear Independence and Dimensionality . . . . . . . . . . . . 15
1.4 Data: Probabilistic View . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Bivariate Random Variables . . . . . . . . . . . . . . . . . . . 24
1.4.2 Multivariate Random Variable . . . . . . . . . . . . . . . . . 28
1.4.3 Random Sample and Statistics . . . . . . . . . . . . . . . . . 29
1.5 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . 31
1.5.2 Frequent Pattern Mining . . . . . . . . . . . . . . . . . . . . . 33
1.5.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36


I Data Analysis Foundations 37

2 Numeric Attributes 38
2.1 Univariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.1 Measures of Central Tendency . . . . . . . . . . . . . . . . . . 39
2.1.2 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Bivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Measures of Location and Dispersion . . . . . . . . . . . . . . 49
2.2.2 Measures of Association . . . . . . . . . . . . . . . . . . . . . 50

,CONTENTS ii


2.3 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.1 Univariate Normal Distribution . . . . . . . . . . . . . . . . . 61
2.5.2 Multivariate Normal Distribution . . . . . . . . . . . . . . . . 63
2.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Categorical Attributes 71
3.1 Univariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.1 Bernoulli Variable . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.2 Multivariate Bernoulli Variable . . . . . . . . . . . . . . . . . 74
3.2 Bivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.1 Attribute Dependence: Contingency Analysis . . . . . . . . . 88
3.3 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.1 Multi-way Contingency Analysis . . . . . . . . . . . . . . . . 95
3.4 Distance and Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Graph Data 105
4.1 Graph Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Topological Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Centrality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.1 Basic Centralities . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.2 Web Centralities . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4 Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.1 Erdös-Rényi Random Graph Model . . . . . . . . . . . . . . . 129
4.4.2 Watts-Strogatz Small-world Graph Model . . . . . . . . . . . 133
4.4.3 Barabási-Albert Scale-free Model . . . . . . . . . . . . . . . . 139
4.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Kernel Methods 150
5.1 Kernel Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1.1 Reproducing Kernel Map . . . . . . . . . . . . . . . . . . . . 156
5.1.2 Mercer Kernel Map . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2 Vector Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.3 Basic Kernel Operations in Feature Space . . . . . . . . . . . . . . . 166
5.4 Kernels for Complex Objects . . . . . . . . . . . . . . . . . . . . . . 173
5.4.1 Spectrum Kernel for Strings . . . . . . . . . . . . . . . . . . . 173
5.4.2 Diffusion Kernels on Graph Nodes . . . . . . . . . . . . . . . 175

, CONTENTS iii


5.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6 High-Dimensional Data 182
6.1 High-Dimensional Objects . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2 High-Dimensional Volumes . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3 Hypersphere Inscribed within Hypercube . . . . . . . . . . . . . . . . 187
6.4 Volume of Thin Hypersphere Shell . . . . . . . . . . . . . . . . . . . 189
6.5 Diagonals in Hyperspace . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.6 Density of the Multivariate Normal . . . . . . . . . . . . . . . . . . . 191
6.7 Appendix: Derivation of Hypersphere Volume . . . . . . . . . . . . . 195
6.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7 Dimensionality Reduction 204
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 209
7.2.1 Best Line Approximation . . . . . . . . . . . . . . . . . . . . 209
7.2.2 Best Two-dimensional Approximation . . . . . . . . . . . . . 213
7.2.3 Best r-dimensional Approximation . . . . . . . . . . . . . . . 217
7.2.4 Geometry of PCA . . . . . . . . . . . . . . . . . . . . . . . . 222
7.3 Kernel Principal Component Analysis (Kernel PCA) . . . . . . . . . 225
7.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . 233
7.4.1 Geometry of SVD . . . . . . . . . . . . . . . . . . . . . . . . 234
7.4.2 Connection between SVD and PCA . . . . . . . . . . . . . . . 235
7.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238


II Frequent Pattern Mining 240

8 Itemset Mining 241
8.1 Frequent Itemsets and Association Rules . . . . . . . . . . . . . . . . 241
8.2 Itemset Mining Algorithms . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.1 Level-Wise Approach: Apriori Algorithm . . . . . . . . . . . 247
8.2.2 Tidset Intersection Approach: Eclat Algorithm . . . . . . . . 250
8.2.3 Frequent Pattern Tree Approach: FPGrowth Algorithm . . . 256
8.3 Generating Association Rules . . . . . . . . . . . . . . . . . . . . . . 260
8.4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
$12.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestsBanks University of Greenwich (London)
Follow You need to be logged in order to follow users or courses
Sold
868
Member since
4 year
Number of followers
181
Documents
2327
Last sold
3 days ago
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Read more Read less
4.1

132 reviews

5
79
4
19
3
13
2
6
1
15

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions