100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for A First Course in Abstract Algebra, 8th Edition (John B. Fraleigh) – Complete Solutions (Chapters 0–57 + Appendix)

Rating
-
Sold
-
Pages
57
Grade
A+
Uploaded on
21-09-2025
Written in
2025/2026

This document provides the full solution manual for A First Course in Abstract Algebra (8th edition) by John B. Fraleigh. It includes complete worked-out solutions for all exercises across the textbook, covering sets and relations, groups, subgroups, cyclic groups, permutations, cosets, direct products, homomorphisms, rings, fields, ideals, factor rings, extension fields, advanced group theory, topology applications, factorization, and Galois theory. The manual also includes an appendix on matrix algebra. It is a comprehensive step-by-step guide designed to support students in mastering abstract algebra concepts.

Show more Read less
Institution
A First Course In Abstract Algebra
Course
A First Course in Abstract Algebra











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
A First Course in Abstract Algebra
Course
A First Course in Abstract Algebra

Document information

Uploaded on
September 21, 2025
Number of pages
57
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete

, CONTENTS
1. Sets and Relations
Sa Sa 1

I. Groups and Subgroups S a S a




2. Introduction and Examples 4 Sa Sa



3. Binary Operations 7
S a



4. Isomorphic Binary Structures 9 S a S a



5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
Sa S a



8. Generators and Cayley Digraphs 24 Sa Sa Sa




II. Permutations, Cosets, and Direct Products Sa Sa Sa Sa




9. Groups of Permutations 26
Sa Sa



10. Orbits, Cycles, and the Alternating Groups Sa Sa Sa Sa Sa



30
11. Cosets and the Theorem of Lagrange 34
Sa Sa Sa Sa Sa



12. Direct Products and Finitely Generated Abelian Groups 37
S a S a S a S a S a S a



13. Plane Isometries 42
Sa




III. Homomorphisms and Factor Groups S a S a S a




14. Homomorphisms 44
15. Factor Groups 49
Sa



16. Factor-Group Computations and Simple Groups 53 Sa S a Sa Sa



17. Group Action on a Set 58
Sa Sa Sa Sa



18. Applications of G-Sets to Counting 61 Sa Sa Sa Sa




IV. Rings and Fields S a S a




19. Rings and Fields 63
Sa Sa



20. Integral Domains 68 Sa



21. Fermat’s and Euler’s Theorems 72
Sa Sa Sa



22. The Field of Quotients of an Integral Domain
Sa Sa Sa Sa Sa Sa Sa 74
23. Rings of Polynomials 76
Sa Sa



24. Factorization of Polynomials over a Field 79Sa Sa Sa Sa Sa



25. Noncommutative Examples 85 Sa



26. Ordered Rings and Fields 87
Sa Sa Sa




V. Ideals and Factor Rings S a S a S a




27. Homomorphisms and Factor Rings Sa Sa Sa 89
28. Prime and Maximal Ideals 94
Sa Sa Sa

,29. Gröbner Bases for Ideals
Sa Sa Sa 99

, VI. Extension Fields S a




30. Introduction to Extension Fields Sa Sa Sa 103
31. Vector Spaces 107
S a



32. Algebraic Extensions 111 S a



33. Geometric Constructions 115 Sa



34. Finite Fields 116
Sa




VII. Advanced Group Theory Sa Sa




35. Isomorphism Theorems 117 Sa



36. Series of Groups 119
Sa Sa



37. Sylow Theorems 122
Sa



38. Applications of the Sylow Theory 124 Sa Sa Sa Sa



39. Free Abelian Groups 128
Sa Sa



40. Free Groups 130
Sa



41. Group Presentations 133
Sa




VIII. Groups in Topology S a S a




42. Simplicial Complexes and Homology Groups 136
Sa Sa Sa Sa



43. Computations of Homology Groups 138 Sa Sa Sa



44. More Homology Computations and Applications 140
Sa Sa Sa Sa



45. Homological Algebra 144 Sa




IX. Factorization
46. Unique Factorization Domains 148
Sa Sa



47. Euclidean Domains 151 S a



48. Gaussian Integers and Multiplicative Norms 154
Sa Sa Sa Sa




X. Automorphisms and Galois Theory S a S a S a




49. Automorphisms of Fields 159 Sa Sa



50. The Isomorphism Extension Theorem 164
Sa Sa Sa



51. Splitting Fields 165 Sa



52. Separable Extensions 167 Sa



53. Totally Inseparable Extensions 171
Sa Sa



54. Galois Theory 173
S a



55. Illustrations of Galois Theory 176 Sa Sa Sa



56. CyclotomicExtensions 183 Sa



57. Insolvability of the Quintic 185 Sa Sa Sa




APPENDIX Matrix Algebra
Sa S a Sa S a 187


iv

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
PrepMasters stuvia
View profile
Follow You need to be logged in order to follow users or courses
Sold
9
Member since
2 months
Number of followers
1
Documents
640
Last sold
5 days ago
College TestBank Hub

College TestBank Hub offers instant access to college test banks, exam guides, and solution manuals for top textbooks and courses. Get accurate, up-to-date resources that make studying easier and exam prep faster.

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions