100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary AQA A-Level Chemistry 1.2 Amount of Substance

Rating
5.0
(1)
Sold
3
Pages
5
Uploaded on
16-12-2020
Written in
2020/2021

These are detailed Revision Notes for Topic 1.2 of AQA A-Level Chemistry (Amount of Substance). They were written by me using a combination of the textbook and class notes. I will also be uploading the other topics and creating bundles. Topics Included: - Relative atomic and molecular masses, the Avogadro constant and the mole - Moles in solution - The ideal gas equation - Empirical and molecular formula - Balanced equations and related calculations - Balanced equations, atom economies and percentage yields.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Study Level
Examinator
Subject
Unit

Document information

Summarized whole book?
No
Which chapters are summarized?
Chapter 2 amount of substance
Uploaded on
December 16, 2020
Number of pages
5
Written in
2020/2021
Type
Summary

Subjects

Content preview

Amount of Substance
2.1 Relative atomic and molecular masses, the
21 Relative Atomic, Molecular Masses, Avogadro’s
Constant and the Mole Avogadro constant and the mole
- Relative atomic mass (Ar) ~ The weighted average 2.2 moles in solution
mass of an atom of an element, taking into
account its naturally occurring isotopes, relative to 2.3 the ideal gas solution
1/12th the relative atomic mass of an atom of 2.4 empirical and molecular formulae
carbon-12.
2.5 balanced equations and related calculations
- Relative molecular mass (Mr) ~ The mass of a
molecule compared to 1/12th the relative atomic 2.6 Balanced equations, atom economies and
mass of an atom of carbon-12. percentage yields
!"#$!%# '!(( )* )+# #,#'#+-
- 𝐴𝑟 = !
'!(( )* )+# !-)' .!$/)+012
!"
!"#$!%# '!(( )* )+# '),#.3,#
- 𝑀𝑟 = !
'!(( )* )+# !-)' .!$/)+012
!"
- Avogadro’s constant ~ The number of atoms in 12g of carbon-12.
- Avogadro’s constant is 6.022 × 1024
- Mole ~ The amount of substance that contains Avogadro’s constants number of particles.
- 𝑚𝑎𝑠𝑠 (𝑔) = 𝑚𝑜𝑙𝑒𝑠 (𝑚𝑜𝑙) × 𝐴$ /𝑀$

22 Moles in Solution
- The concentration of a solution is the number of moles of solute dissolved in 1dm3 solvent.
5),#( ('),)
- 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑜𝑙𝑑𝑚04 ) = #
8),3'# (9' )


e.g. 1.17g of sodium chloride was dissolved in water to make 500cm3 of solution. What is
the concentration of the solution in mol dm-3 Ar Na=23.0 Cl=35.5?

The mass of 1 mole of sodium chloride is 23.0 + 35.5 = 58.5g
𝑚𝑎𝑠𝑠/𝑔 1.17
= = 0.020 𝑚𝑜𝑙
𝑀$ 58.5
+) )* '),#( >.>2>
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (mol𝑑𝑚04 ) = "),3'# (9'# ) = >.@>> = 0.040𝑚𝑜𝑙𝑑𝑚04

.)+.#+-$!-:)+ ;'),9'$# < × "),3'# (.'# )
- 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1>>>
- It is often necessary to prepare a solution with a highly accurate concentration. These are prepared in a
volumetric flask. When the bottom of the meniscus touches the line, the volume is 250cm3 with an
error of +/- 0.15cm3.
- Method for a 250cm3 standard solution:
1. Weigh out the desired mass of the solid into a weighing boat.
2. Put the solid into a beaker, rinse the weighing boat and put the washings into the beaker.
3. Add approximately 100cm3 of distilled water to the beaker.
4. Stir until all of the solid has dissolved.
5. Carefully pour all of the solution into the volumetric flask.
6. Rinse the beaker and pour this into the volumetric flask.
7. Add distilled water until it is about 1cm below the line.
8. Using a dropper pipette, carefully continue to add distilled water until the bottom of the meniscus
touches the line.
9. Put the stopper on the flask and invert it to mix

, - You may have to make up a solution with a low concentration. When this happens, you make up a
concentrated solution and then dilute it. This is called serial dilution. You may need to do multiple dilutions
to get the desired concentration.
- To work out the concentration of a serial dilution
o Calculate the concentration of the first solution
"),3'# A:A#--#9
o 𝑁𝑒𝑤 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑙𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × "),3'# )* +#B *,!(C
o For any further dilutions repeat the calculation for each successive solution.

23 The Ideal Gas Solution
- Boyle’s Law
o The pressure multiplied by volume is a constant at a constant temperature.
o P x V = constant
- Charles’ Law
o The volume is proportional to the temperature at constant pressure
o 𝑉 ∝ 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
8
o D
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
- Gay-Lussac’s Law
o The pressure is proportional to the temperature at a constant volume
o 𝑃 ∝ 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
E
o D = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
- The ideal gas equation is a combination of these laws.
o 𝑃𝑉 = 𝑛𝑅𝑇
o Pressure (Pa) x Volume (m3) = number of moles x gas constant (J K-1mol-1). x temperature (K)
o The Value of R (gas constant) is 8.31
0
- 0 C = 273K
- This can also be represented to include Mr
'FD
o 𝑀$ = E8
- To determine the Mr of a volatile gas you need to know the temperature of the experiment, volume of
gas, mass of the gas and pressure. You use this method:
1. Weigh the mass of the gas canister
2. Allow gas to bubble through the delivery tube until the level of water inside and outside the
measuring cylinder is the same.
3. Measure the volume of the gas
4. Remeasure the mass of the gas canister
5. Measure temperature
6. Pressure will be atmospheric pressure (100kPa)

24 Empirical and Molecular Formulae
- Empirical formula ~ the formula that represents the simplest whole number ratio of the atoms of each
element in a compound.
- To find an empirical formula:
1. Find the masses of each of the elements in compound
2. Work out the number of moles of atoms in each element
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 =
𝑚𝑎𝑠𝑠 𝑜𝑓 1 𝑚𝑜𝑙 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
$4.10
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
4 year ago

4 year ago

Thank you very much for your purchase and kind review. I have just uploaded some more A Level Chemistry topics to my page if you are interested. Thanks again, Emily x

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
emilysarahjudge Chelmsford County High School for Girls
Follow You need to be logged in order to follow users or courses
Sold
1509
Member since
5 year
Number of followers
786
Documents
131
Last sold
1 week ago
GCSE and A Level Notes

I sell notes for the following subjects: AQA GCSE Chemistry AQA GCSE Biology AQA GCSE Physics AQA GCSE History AQA A-Level Chemistry AQA A-Level Psychology OCR A-Level Biology

4.5

131 reviews

5
96
4
23
3
2
2
2
1
8

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions