100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary EMF lecture notes as well as Q and A notes

Rating
4.5
(2)
Sold
29
Pages
120
Uploaded on
09-12-2020
Written in
2020/2021

Does not cover block 11 and 12. The rest is covered including the corresponding live sessions. The document is long, but it covers everything mentioned in class.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 9, 2020
Number of pages
120
Written in
2020/2021
Type
Summary

Subjects

Content preview

Empirical Methods in Finance Part 2


Table of Contents
Live session 1 ........................................................................................................................................... 3
Definition and conceptual framework......................................................................................................... 5
Extra video ATE ........................................................................................................................................... 6
Designing an event study ............................................................................................................................. 6
Difference calendar and event time....................................................................................................... 7
Stata codes ............................................................................................................................................... 7
Video normal and abnormal returns ......................................................................................................... 12
Stata commands AR and CAR ............................................................................................................ 14
Joint hypothesis problem ........................................................................................................................... 17
Canvas quizzes main points ................................................................................................................. 18
Live session 2 ......................................................................................................................................... 19
Lecture 3 Inference event studies .............................................................................................................. 23
Stata ....................................................................................................................................................... 25
Slides 2: event studies ................................................................................................................................ 26
Lecture 3 heteroscedasticity ....................................................................................................................... 28
Stata ....................................................................................................................................................... 31
Cross sectional correlation ........................................................................................................................ 32
Stata ....................................................................................................................................................... 35
Few events .................................................................................................................................................. 36
Stata few events..................................................................................................................................... 37
Recap quiz ............................................................................................................................................. 38
Live session 3 ......................................................................................................................................... 40
Lecture 4: time series ................................................................................................................................. 46
Trend and seasonality ................................................................................................................................ 47
Dynamic models ......................................................................................................................................... 50
Live session 4 ......................................................................................................................................... 55
Lecture 5: OLS assumptions and time series ............................................................................................ 59
Time series estimation Stata ...................................................................................................................... 64
Extra videos intuition ........................................................................................................................... 64
Live session 5 ......................................................................................................................................... 65
Assignment questions................................................................................................................................. 70

,Lecture 6: serial correlation and strong dependence ............................................................................... 71
Extra video random walk..................................................................................................................... 73
Serial correlation .................................................................................................................................. 73
Serial correlation testing ...................................................................................................................... 79
Stata Breusch-Godfrey ......................................................................................................................... 79
Class quiz summary.............................................................................................................................. 79
Live session 6 – serial correlation and persistent processes .............................................................. 84
Lecture 7 Time series models..................................................................................................................... 87
Time series processes ............................................................................................................................ 87
Selecting the right model ...................................................................................................................... 92
Stata ....................................................................................................................................................... 95
Live session 7.............................................................................................................................................. 96
Assignment for practice notes.................................................................................................................... 96
Lecture 8: Forecasting basics .................................................................................................................... 97
Model selection.................................................................................................................................... 100
Answers to the quiz: ........................................................................................................................... 101
Lecture 9 Stochastic volatility .................................................................................................................. 102
Stylized facts........................................................................................................................................ 102
Stochastic volatility with dice and coins ........................................................................................... 102
GARCH models .................................................................................................................................. 103
GARCH ............................................................................................................................................... 104
Leverage effects................................................................................................................................... 104
GARCH-in-mean model..................................................................................................................... 104
Live session block 8 and 9........................................................................................................................ 105
One step forecast................................................................................................................................. 105
Two step forecast → easy ................................................................................................................... 105
Two step forecast → long route ......................................................................................................... 106


................................ 106
Live session block 10 ................................................................................................................................ 106
Live session Mock exam .......................................................................................................................... 108
EXAM preparation................................................................................................................................... 109
Block 12: Live session .............................................................................................................................. 118

,Live session 1

𝐸(𝑎 + 𝑏𝑥 + 𝑐𝑦) = 𝑎 + 𝑏𝐸(𝑥) + 𝑐𝐸(𝑦)

𝑉𝑎𝑟(𝑎 + 𝑏𝑥 + 𝑐𝑦) = 0 + 𝑏 2 𝑉𝑎𝑟(𝑥) + 𝑐 2 𝑉𝑎𝑟(𝑦) + 2 ∗ 𝑏 ∗ 𝑐 ∗ 𝐶𝑜𝑣(𝑥, 𝑦)

𝐶𝑜𝑣(𝑎 + 𝑏𝑥 + 𝑐𝑦, 𝑥) = 𝐶𝑜𝑣(𝑎, 𝑥) + 𝑏 ∗ 𝐶𝑜𝑣(𝑥, 𝑥) + 𝑐 ∗ 𝐶𝑜𝑣(𝑦, 𝑥)

𝐶𝑜𝑣(𝑎, 𝑥) = 0, since a is a constant.
𝐶𝑜𝑣(𝑥, 𝑥) = 𝑉𝑎𝑟(𝑥)
𝐶𝑜𝑣(𝑦, 𝑥) = 𝐶𝑜𝑣(𝑥, 𝑦)
𝐶𝑜𝑣(𝑥, 𝑦)
𝐶𝑜𝑟𝑟(𝑥, 𝑦) =
√𝑉𝑎𝑟(𝑥) ∗ 𝑉𝑎𝑟(𝑦)

- Correlation is NOT a linear operator. This is why it falls between 0 and 1.

OLS
𝑦 = 𝛼 + 𝛽𝑥 + 𝜀
𝐶𝑜𝑣 (𝑥, 𝑦) 𝑉𝑎𝑟(𝑥)
𝛽̂ = = 𝐶𝑜𝑟𝑟(𝑥, 𝑦) ∗ √
𝑉𝑎𝑟(𝑥) 𝑉𝑎𝑟(𝑦)
- Variance of y and x is the same for event studies, so the second formula might be easier to use.

𝜀̂ = 𝐸(𝑦 − 𝛼̂ + ̂𝛽 𝑥) = 0
- Residual for OLS is ALWAYS 0.

𝛼̂ = 𝐸(𝑦) − 𝛽 ∗ 𝐸(𝑥)


Consistent: beta hat approaches beta when the sample size increases.
- Consistency is a property of the estimator but NOT of estimates.

Unbiased: the expected value of beta hat is equal to the true beta.

Efficiency: Var(beta_hat) < Var(beta_tilda)
̂
𝑉𝑎𝑟(𝛽)
IFFF ̃
𝑉𝑎𝑟(𝛾
→ 𝑐 < 1, as sample size increases.

1 1
𝑉1 = ∑(𝑥𝑖 − 𝑥)2 𝑎𝑛𝑑 𝑉2 = ∑(𝑥𝑖 − 𝑥)2
𝑁 𝑁−1

Differences two estimators of the variance:
- Both are consistent.
- V2 is unbiased but V1 has bias.
o Use V2 for small sample sizes.
- V1 is more efficient than V2.
o Use for large sample sizes.

V1 can never be BLUE, because it is biased.
- BLUE: Best Linear Unbiased Estimator.

, Conditioning: we take a subset of the sample and we take a moment in the subset of the sample.
You have 5 squares with different colors and each square has a color.




(8 + 1)
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑) = = 4.5
2
10
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛) = = 3.3
3
2 3
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟) = 2.5 ∗ ( ) + 3.3 ∗ ( ) = 3.8
5 5

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 2 ∑ 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 2
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟) = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
− ( 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)

64+1 8+1 2
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑) = 2
− ( 2
) = 12.25
25 + 4 + 9 5 + 2 + 3 2 14
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛) = −( ) =
3 3 9

2 3 14 175
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟) = ∗ 12.25 + ∗ = ≈ 5.8
5 5 9 30

- We haven’t computed the risk before knowing the color. We have calculated the average risk
with knowing the color. So, there is still some risk there. As a result, it is an approximation.

We can, however, determine the true value by covering these steps:


2
𝑉(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)) = 𝐸(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)2 ) − 𝐸(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟))
2 10 2 3
𝑉(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)) = 4.52 ∗ + ( ) ∗ − 3.82 = 0.326
5 3 5
Right result = 0.326 + 5.8 = 6.126

Law of total expectation:
𝐸(𝑦) = 𝐸(𝐸(𝑦|𝑥)) = ∑ 𝐸(𝑦|𝑥 = 𝑥𝑖 ) ∗ 𝑃(𝑥 = 𝑥𝑖 )

Law total variance:
𝑉(𝑦) = 𝑉(𝐸(𝑦|𝑥)) + 𝐸(𝑉(𝑦|𝑥))
- Expected idiosyncratic volatility

Reviews from verified buyers

Showing all 2 reviews
4 year ago

4 year ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
marissameulendijks Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
125
Member since
5 year
Number of followers
85
Documents
10
Last sold
6 months ago

3.4

10 reviews

5
4
4
2
3
1
2
0
1
3

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions