First Course in Abstract Algebra A
ss ss ss ss ss ss
8th Edition by John B. Fraleigh
ss ss ss ss ss ss ss ss
ss ss All Chapters Full Complete
ss ss ss
, CONTENTS
1. Sets ss and ss Relations 1
I. Groups ss and s s Subgroups
2. Introduction s s and s s Examples 4
3. Binary s s Operations 7
4. Isomorphic s s Binary s s Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic ss s s Groups 21
8. Generators s s and s s Cayley s s Digraphs 24
II. Permutations, Cosets, and Direct Products
ss ss ss ss
9. Groups ss of ssPermutations 26
10. Orbits, ssCycles, ssand ssthe ssAlternating ssGroups
30
11. Cosets ssand ssthe ss Theorem ss of ssLagrange 34
12. Direct s s Products s s and s s Finitely s s Generated s s Abelian s s Groups 37
13. Plane s s Isometries 42
III. Homomorphisms and Factor Groups ss ss ss
14. Homomorphisms 44
15. Factor s s Groups 49
16. Factor-Group s s Computations s s and s s Simple s s Groups 53
17. Group ssAction sson ssa ssSet 58
18. Applications ssof ssG-Sets ssto ssCounting 61
IV. Rings ss and ss Fields
19. Rings ssand ssFields 63
20. Integral s s Domains 68
21. Fermat’s s s and s s Euler’s s s Theorems 72
22. The s s Field s s of s s Quotients s s of s s an s s Integral s s Domain 74
23. Rings s s of s s Polynomials 76
24. Factorization ssof ssPolynomials ssover ssa ssField 79
25. Noncommutative ssExamples 85
26. Ordered s s Rings s s and s s Fields 87
V. Ideals and Factor
ss ss ss Rings
27. Homomorphisms ssand ssFactor ssRings 89
28. Prime ssand ssMaximal ssIdeals 94
,29. Gröbner ssBases ssfor ssIdeals 99
, VI. Extension s s Fields
30. Introduction ssto ssExtension ssFields 103
31. Vector s s Spaces 107
32. Algebraic s s Extensions 111
33. Geometric ssConstructions 115
34. Finite s s Fields 116
VII. Advanced Group Theory
ss ss
35. Isomorphism ssTheorems 117
36. Series ssof ssGroups 119
37. Sylow s s Theorems 122
38. Applications s s of s s the s s Sylow s s Theory 124
39. Free s s Abelian s s Groups 128
40. Free ssGroups 130
41. Group s s Presentations 133
VIII. Groups ss in s s Topology
42. Simplicial s s Complexes s s and s s Homology s s Groups 136
43. Computations ss of ssHomology ssGroups 138
44. More ssHomology ssComputations ssand ssApplications 140
45. Homological ssAlgebra 144
IX. Factorization
46. Unique s s Factorization s s Domains 148
47. Euclidean s s Domains 151
48. Gaussian s s Integers s s and s s Multiplicative s s Norms 154
X. Automorphisms s s and s s Galois s s Theory
49. Automorphisms ssof ssFields 159
50. The s s Isomorphism s s Extension s s Theorem 164
51. Splitting s s Fields 165
52. Separable ssExtensions 167
53. Totally ssInseparable ssExtensions 171
54. Galois s s Theory 173
55. Illustrations ssof ssGalois ssTheory 176
56. CyclotomicssExtensions 183
57. Insolvability ss of s s the s s Quintic 185
APPENDIX ss s s Matrix ss ss Algebra 187
iv