ADVANCED HEALTH ASSESSMENT & CLINICAL
nn nn nn nn
DIAGNOSIS INPRIMARY CARE, 6TH EDITION
nn nn n nn nn nn
Joyce E. Dains, Linda Ciofu Baumann & Pamela Scheibel
nn nn nn nn nn nn nn nn
, l O M oA R cP S D | 1 2 6
nn 56 7
nn
nn 13
Test Bank for Advanced Health Assessment & Clinical Diagnosis in
nn nn nn nn nn nn nn nn nn
Primary Care6th Edition Dains nn nn n nn nn
Chapter nn1: nnClinical nnReasoning, nnDifferential nnDiagnosis, nnEvidence-Based nnPractice, nnand nnSymptom
AnalysisM
nn n ultiple nnChoice
Identify nnthe nnchoice nnthat nnbest nncompletes nnthe nnstatement nnor nnanswers nnthe nnquestion.
nn 1. Which nntype nnof nnclinical nndecision-making nnis nnmost nnreliable?
A. Intuitive
B. Analytical
C. Experiential
D. Augenblick
nn 2. Which nnof nnthe nnfollowing nnis nnfalse? nnTo nnobtain nnadequate nnhistory, nn health-care nnproviders nnmust nnbe:
A. Methodical nnand nnsystematic
B. Attentive nnto nnthe nnpatient’s nnverbal nnand nnnonverbal
nnlanguage
C. Able nnto nnaccurately nninterpret nn the nnpatient’s
nnresponses
D. Adept nnat nnreading nninto nnthe nnpatient’s nnstatements
nn 3. Essential nnparts nnof nna nnhealth nnhistory nninclude nnall nn of nnthe nnfollowing nnexcept:
A. Chief nncomplaint
B. History nnof nnthe nnpresent nnillness
C. Current nnvital nnsigns
D. All nn of nnthe nnabove nnare nnessential nnhistory
nncomponents
nn 4. Which nnof nnthe nnfollowing nnis nnfalse? nnWhile nnperforming nnthe nnphysical nn examination, nnthe nnexaminer nnmust nnbe nnable nnto:
A. Differentiate nnbetween nnnormal nnand nnabnormal nnfindings
B. Recall nnknowledge nnof nna nnrange nnof nnconditions nnand nntheir nnassociated nnsigns
nnand nnsymptoms
C. Recognize nnhow nncertain nnconditions nnaffect nn the nnresponse nnto nnother nnconditions
D. Foresee nnunpredictable nnfindings
nn 5. The nnfollowing nnis nnthe nnleast nnreliable nnsource nnof nninformation nnfor nn diagnostic nnstatistics:
A. Evidence-based nninvestigations
B. Primary nnreports nn of nnresearch
C. Estimation nnbased nnon nna nnprovider’s
nnexperience
D. Published nnmeta-analyses
nn 6. The nnfollowing nncan nnbe nnused nnto nnassist nnin nnsound nnclinical nndecision-making:
A. Algorithm nnpublished nnin nna nnpeer-reviewed nnjournal
nnarticle
B. Clinical nnpractice nnguidelines
C. Evidence-based nnresearch
D. All nnof nnthe nnabove
nn 7. If nna nndiagnostic nnstudynnhas nnhigh nnsensitivity, n n this nnindicates nna:
A. High nnpercentage nnof nnpersons nnwith nnthe nngiven nncondition nnwill nnhave nnan
nnabnormal nnresult
B. Low nnpercentage nnof nnpersons nnwith nnthe nngiven nncondition nnwill nnhave nnan
nnabnormal nnresult
C. Low nnlikelihood nnof nnnormal nnresult nnin nnpersons nnwithout nna nngiven nncondition
D. None nnof nnthe nnabove
nn 8. If nna nndiagnostic nnstudy nnhas nnhigh nnspecificity, n n this nnindicates nna:
A. Low nnpercentage nnof nnhealthy nnindividuals nn will nnshow nna nnnormal nnresult
B. High nnpercentage nn of nnhealthy nnindividuals nnwill nnshow nna nnnormal nnresult
C. High nnpercentage nnof nnindividuals nnwith nna nndisorder nnwill nnshow nna
nnnormal nnresult
D. Low nnpercentage nnof nnindividuals nnwith nna nndisorder nnwill nnshow nnan
nnabnormal nnresult
nn 9. A nnlikelihood nn ratio nnabove nn1 nnindicates nnthat nna nndiagnostic nntest nnshowing nna:
A. Positive nnresult nnis nnstrongly nnassociated nnwith nnthe nndisease
B. Negative nnresult nnis nnstrongly nnassociated nnwith nnabsence nnof
nnthe nndisease
C. Positive nnresult nnis nnweakly nnassociated nnwith nnthe nndisease
D. Negative nnresult nnis nn weakly nnassociated nnwith nnabsence nnof
nnthe nndisease
nn 10. Which nnof nnthe nnfollowing nnclinical nnreasoning nntools nnis nndefined nnas nnevidence-based nnresource nnbased nnon nnmathematical
, l O M oA R cP S D | 1 2 6
nn
nn modeling nn
56 7
to nnexpress nnthe nnlikelihood nn of nna nncondition nnin nnselect nnsituations,
nn nnsettings, nnand/or nnpatients?
13
, l O M oA R cP S D | 1 2 6
nn 56 7
nn
nn 13
A. Clinical nnpractice
nnguideline
B. Clinical nndecision nnrule
C. Clinical nnalgorithm
Chapter nn1: nnClinical nnreasoning, nndifferential nndiagnosis, nnevidence-based nnpractice, nnand nnsymptom nnana
Answer nnSection
MULTIPLE nnCHOICE
1. ANS: B
Croskerry nn(2009) nndescribes nntwo nnmajor nntypes nnof nnclinical nndiagnostic nndecision-making: nnintuitive nnand nnanalytical.
nnIntuitive nndecision- nnmaking nn(similar nnto nnAugenblink nndecision-making) nnis nnbased nnon nnthe nnexperience nnand
nnintuition nnof nnthe nnclinician nnand nnis nnless nnreliable nnandnpaired nnwith nnfairly nncommon nnerrors. nnIn nncontrast, nnanalytical
nndecision-making nnis nnbased nnon nncareful nnconsideration nnand nnhas nngreater nnreliability nnwith nnrare nnerrors.
PTS: 1
2. ANS: D
To nnobtain nnadequate nnhistory, nnproviders nnmust nnbe nnwell nnorganized, nnattentive nnto nnthe nnpatient’s nnverbal nnand nnnonverbal
nnlanguage, nnand nnablento nnaccurately nninterpret nnthe nnpatient’s nnresponses nnto nnquestions. nnRather nnthan nnreading nninto nnthe
nnpatient’s nnstatements, nnthey nnclarify nnany nnareas nnof nnuncertainty.
PTS: 1
3. ANS: C
Vital nnsigns nnare nnpart nnof nnthe nnphysical nnexamination nnportion nnof nnpatient nnassessment, nnnot nnpart nnof nnthe nnhealth nnhistory.
PTS: 1
4. ANS: D
While nnperforming nnthe nnphysical nnexamination, nnthe nnexaminer nnmust nnbe nnable nnto nndifferentiate nnbetween nnnormal nnand
nnabnormal nnfindings, nnrecall nnknowledge nnof nna nnrange nnof nnconditions, nnincluding nntheir nnassociated nnsigns nnand
nnsymptoms, nnrecognize nnhow nncertain nnconditions nnaffectnthe nnresponse nnto nnother nnconditions, nnand nndistinguish nnthe
nnrelevance nn of nnvaried nnabnormal nnfindings.
PTS: 1
5. ANS: C
Sources nnfor nndiagnostic nnstatistics nninclude nntextbooks, nnprimary nnreports nnof nnresearch, nnand nnpublished nnmeta-analyses.
nnAnother nnsource nnofnstatistics, nnthe nnone nnthat nnhas nnbeen nnmost nnwidely nnused nnand nnavailable nnfor nnapplication nn to nnthe
nnreasoning nnprocess, nnis nnthe nnestimation nnbased nnon nna nnprovider’s nnexperience, nnalthough nnthese nnare nnrarely nnaccurate.
nnOver nnthe nnpast nndecade, nnthe nnavailability nnof nnevidence nnon nnwhich nnto nnbase nnclinical nnreasoning nnis nnimproving, n n and
nnthere nnis nnan nnincreasing nnexpectation nnthat nnclinical nnreasoning nnbe nnbased nnon nnscientific nnevidence.
Evidence-based nnstatistics nnare nnalso nnincreasingly nnbeing nnused nnto nndevelop nnresources nnto nnfacilitate nnclinical nn decision-making.
PTS: 1
6. ANS: D
To nnassist nnin nnclinical nndecision-making, nna nnnumber nnof nnevidence-based nnresources nnhave nnbeen nndeveloped nnto nnassist
nnthe nnclinician.nResources, nnsuch nnas nnalgorithms nnand nnclinical nnpractice nnguidelines, nnassist nnin nnclinical nnreasoning nnwhen
nnproperly nnapplied.
PTS: 1
7. ANS: A
The nnsensitivity nnof nna nndiagnostic nnstudy nnis nnthe nnpercentage nnof nnindividuals nnwith nnthe nntarget nncondition nnwho nnshow
nnan nnabnormal, nnor nnpositive,nresult. nnA nnhigh nnsensitivity nnindicates nnthat nna nngreater nnpercentage nnof nnpersons nn with nnthe
nngiven nn condition nn will nnhave nnan nnabnormal nnresult.
PTS: 1
8. ANS: B
The nnspecificity nnof nna nndiagnostic nnstudy nnis nnthe nnpercentage nnof nnnormal, nnhealthy nnindividuals nnwho nnhave nna
nnnormal nnresult. nnThe nngreater nnthenspecificity, nnthe nngreater nnthe nnpercentage nnof nnindividuals nnwho nnwill nnhave
nnnegative, nnor nnnormal, nnresults nnif nnthey nndo nnnot nnhave nnthe nntarget nncondition.
PTS: 1
9. ANS: A
The nnlikelihood nnratio nnis nnthe nnprobability nnthat nna nnpositive nntest nnresult nnwill nnbe nnassociated nnwith nna nnperson nnwho nnhas
nnthe nntarget nncondition nnand nnannegative nnresult nnwill nnbe nnassociated nnwith nna nnhealthy nnperson. nnA nnlikelihood nnratio
nnabove nn1 nnindicates nnthat nna nnpositive nnresult nnis nnassociated nnwith nnthe nndisease; nna nnlikelihood nnratio nnless nnthan nn1
nnindicates nnthat nna nnnegative nn result nnis nnassociated nnwith nnan nnabsence nnof nnthe nndisease.