Assignment 4
Due 08 September 2025
, MAT1581 Assignment 4 — Due date: 08 September 2025
MAT1581 Assignment 4
Due date: 08 September 2025
Solutions
Question 1: 34 Marks
10
R
(1.1) Evaluate 25−x2
dx.
Step 1: Use partial fractions.
10 1 1
= + .
25 − x2 5−x 5+x
Step 2: Integrate term by term.
Z Z
1 1
dx = − ln |5 − x|, dx = ln |5 + x|.
5−x 5+x
Final Answer: Z
10 5+x
2
dx = ln + C.
25 − x 5−x
R 2 −5
(1.2) Evaluate ln(e2x ) dx.
Z
ln e2x−5 dx
Step 1: Simplify the logarithm.
We use the identity ln(eu ) = u, so:
ln(e2x−5 ) = 2x − 5.
Step 2: Integrate.
Z Z Z
(2x − 5) dx = 2x dx − 5 dx.
Z Z
2
2x dx = x , −5 dx = −5x.
Page 1