100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Test Bank For Pilbeam’s Mechanical Ventilation: Physiological and Clinical Applications, 6th Edition By by James M. Cairo All Chapters A+

Rating
-
Sold
-
Pages
361
Grade
A+
Uploaded on
22-08-2025
Written in
2025/2026

Test Bank For Pilbeam’s Mechanical Ventilation: Physiological and Clinical Applications, 6th Edition By by James M. Cairo All Chapters A+

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Course

Document information

Uploaded on
August 22, 2025
Number of pages
361
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapter 01: Basic Terms and Concepts of Mechanical Ventilation
Cairo: Pilbeam’s Mechanical Ventilation: Physiological and Clinical Applications, 6th
Edition


MULTIPLE CHOICE

1. The body’s mechanism for conducting air in and out of the lungs is known as which of
the following?
a. External respiration
b. Internal respiration
c. Spontaneous ventilation
d. Mechanical ventilation
ANS: C
The conduction of air in and out of the body is known as ventilation. Since the question asks
for the body’s mechanism, this would be spontaneous ventilation. External respiration
involves the exchange of oxygen (O2) and carbon dioxide (CO2) between the alveoli and the
pulmonary capillaries. Internal respiration occurs at the cellular level and involves movement
of oxygen from the systemic blood into the cells.

REF: pg. 2

2. Which of the following are involved in external respiration?
a. Red blood cells and body cells
b. Scalenes and trapezius muscles
c. Alveoli and pulmonary capillaries
d. External oblique and transverse abdominal muscles
ANS: C
External respiration involves the exchange of oxygen and carbon dioxide (CO2) between the
alveoli and the pulmonary capillaries. Internal respiration occurs at the cellular level and
involves movement of oxygen from the systemic blood into the cells. Scalene and trapezius
muscles are accessory muscles of inspiration. External oblique and transverse abdominal
muscles are accessory muscles of expiration.

REF: pg. 2

3. The graph that shows intrapleural pressure changes during normal spontaneous breathing
is depicted by which of the following?
a.

, b.




c.




d.




ANS: B
During spontaneous breathing, the intrapleural pressure drops from about 5 cm H2O at end-
expiration to about 10 cm H2O at end-inspiration. The graph depicted for answer B shows
that change from 5 cm H2O to 10 cm H2O.

REF: pg. 3

4. During spontaneous inspiration alveolar pressure (PA) is about: .
a. 1 cm H2O
b. +1 cm H2O
c.
0 cm H2O
d.
5 cm H2O
ANS: A
1 cm H2O is the lowest alveolar pressure will become during normal spontaneous
ventilation. During the exhalation of a normal spontaneous breath the alveolar pressure will
become 1 cm H2O.

REF: pg. 4

5. The pressure required to maintain alveolar inflation is known as which of the following?
a. Transairway pressure (PTA)
b. Transthoracic pressure (PTT)
c. Transrespiratory pressure (PTR)
d. Transpulmonary pressure (PL)
ANS: D

, The definition of transpulmonary pressure (PL) is the pressure required to maintain alveolar
inflation. Transairway pressure (PTA) is the pressure gradient required to produce airflow in
the conducting tubes. Transrespiratory pressure (PTR) is the pressure to inflate the lungs and
airways during positive-pressure ventilation. Transthoracic pressure (PTT) represents the
pressure required to expand or contract the lungs and the chest wall at the same time.

REF: pg. 4

6. Calculate the pressure needed to overcome airway resistance during positive-pressure
ventilation when the proximal airway pressure (PAw) is 35 cm H2O and the alveolar
pressure (PA) is 5 cm H2O.
a. 7 cm H2O
b. 30 cm H2O
c. 40 cm H2O
d. 175 cm H2O
ANS: B
The transairway pressure (PTA) is used to calculate the pressure required to overcome airway
resistance during mechanical ventilation. This formula is PTA = Paw - PA.

REF: pg. 4

7. The term used to describe the tendency of a structure to return to its original form after
being stretched or acted on by an outside force is which of the following?
a. Elastance
b. Compliance
c. Viscous resistance
d. Distending pressure
ANS: A
The elastance of a structure is the tendency of that structure to return to its original shape after
being stretched. The more elastance a structure has, the more difficult it is to stretch. The
compliance of a structure is the ease with which the structure distends or stretches.
Compliance is the opposite of elastance. Viscous resistance is the opposition to movement
offered by adjacent structures such as the lungs and their adjacent organs. Distending
pressure is pressure required to maintain inflation, for example, alveolar distending pressure.

REF: pg. 5

8. Calculate the pressure required to achieve a tidal volume of 400 mL for an intubated
patient with a respiratory system compliance of 15 mL/cm H2O.
a. 6 cm H2O
b. 26.7 cm H2O
c. 37.5 cm H2O
d. 41.5 cm H2O
ANS: B
C = V/P then P = V/C

REF: pg. 5

, 9. Which of the following conditions causes pulmonary compliance to increase?
a. Asthma
b. Kyphoscoliosis
c. Emphysema
d. Acute respiratory distress syndrome (ARDS)
ANS: C
Emphysema causes an increase in pulmonary compliance, whereas ARDS and kyphoscoliosis
cause decreases in pulmonary compliance. Asthma attacks cause increase in airway resistance.

REF: pg. 6 | pg. 7

10. Calculate the effective static compliance (Cs) given the following information about a
patient receiving mechanical ventilation: peak inspiratory pressure (PIP) is 56 cm H2O,
plateau pressure (Pplateau) is 40 cm H2O, exhaled tidal volume (VT) is 650 mL, and positive
end expiratory pressure (PEEP) is 10 cm H2O.
a. 14.1 mL/cm H2O
b. 16.3 mL/cm H2O
c. 21.7 mL/cm H2O
d. 40.6 mL/cm H2O
ANS: C
The formula for calculating effective static compliance is Cs = VT/(Pplateau  EEP).

REF: pg. 6 | pg. 7

11. Based upon the following patient information, calculate the patient’s static lung
compliance: exhaled tidal volume (VT) is 675 mL, peak inspiratory pressure (PIP) is 28 cm
H2O, plateau pressure (Pplateau) is 8 cm H2O, and PEEP is set at 5 cm H2O.
a. 0.02 L/cm H2O
b. 0.03 L/cm H2O
c. 0.22 L/cm H2O
d. 0.34 L/cm H2O
ANS: C
The formula for calculating effective static compliance is Cs = VT/(Pplateau  EEP).

REF: pg. 5 | pg. 6

12. A patient receiving mechanical ventilation has an exhaled tidal volume (VT) of 500 mL and a
positive end expiratory pressure setting (PEEP) of 5 cm H2O. Patient-ventilator system checks
reveal the following data:

Time PIP (cm H2O) Pplateau (cm H2O)
0600 27 15
0800 29 15
1000 36 13

The respiratory therapist should recommend which of the following for this patient?
1. Tracheobronchial suctioning
2. Increase in the set tidal volume

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestsBanks University of Greenwich (London)
Follow You need to be logged in order to follow users or courses
Sold
867
Member since
4 year
Number of followers
180
Documents
2293
Last sold
1 week ago
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Read more Read less
4.1

132 reviews

5
79
4
19
3
13
2
6
1
15

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions