FirstCourseinAbstractAlgebraA
x x x x x x x
x 8th EditionbyJohnB.Fraleigh
x x x x x x x x All
x ChaptersFullCompletex x
, CONTENTS
1. Sets and Relations
x x 1
I. Groups and Subgroups x x
2. Introduction and Examples 4 x x
3. Binary Operations 7 x
4. Isomorphic Binary Structures 9 x x
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
x x
8. Generators and Cayley Digraphs 24 x x x
II. Permutations, Cosets, and Direct Products x x x x
9. Groups of Permutations 26 x x
10. Orbits,Cycles,andthe AlternatingGroups x x x x x
30
11. Cosets and the Theorem of Lagrange 34
x x x x x
12. Direct Products and Finitely Generated Abelian Groups
x 37 x x x x x
13. Plane Isometries 42
x
III. Homomorphisms and Factor Groups x x x
14. Homomorphisms 44
15. Factor Groups 49 x
16. Factor-Group Computations and Simple Groups x x x x 53
17. Group Action on a Set 58 x x x x
18. ApplicationsofG-SetstoCounting 61 x x x x
IV. Rings and Fields x x
19. Rings and Fields
x 63 x
20. Integral Domains 68 x
21. Fermat’s and Euler’s Theorems 72 x x x
22. The Field of Quotients of an Integral Domain
x 74 x x x x x x
23. Rings of Polynomials
x 76 x
24. FactorizationofPolynomialsoveraField 79 x x x x x
25. NoncommutativeExamples 85 x
26. Ordered Rings and Fields 87 x x x
V. Ideals and Factor Rings x x x
27. Homomorphisms and Factor Rings x x x 89
28. PrimeandMaximalIdeals x 94 x x
,29. Gröbner BasesforIdeals
x x x 99
, VI. Extension Fields x
30. IntroductiontoExtensionFields x x x 103
31. Vector Spaces 107 x
32. Algebraic Extensions 111 x
33. GeometricConstructions 115 x
34. Finite Fields 116 x
VII. Advanced Group Theory x x
35. IsomorphismTheorems 117 x
36. Series of Groups 119
x x
37. Sylow Theorems 122 x
38. Applications of the Sylow Theory x x x x 124
39. Free Abelian Groups
x 128 x
40. FreeGroups
x 130
41. Group Presentations 133 x
VIII. Groups in Topology x x
42. Simplicial Complexes and Homology Groups 136 x x x x
43. Computations of Homology Groups 138 x x x
44. More Homology Computations and Applications
x 140 x x x
45. HomologicalAlgebra 144 x
IX. Factorization
46. Unique Factorization Domains 148 x x
47. Euclidean Domains 151 x
48. Gaussian Integers and Multiplicative Norms x x x x 154
X. Automorphisms and Galois Theory x x x
49. Automorphisms of Fields 159 x x
50. The Isomorphism Extension Theorem
x x x 164
51. Splitting Fields 165 x
52. SeparableExtensions 167 x
53. TotallyInseparableExtensions x 171 x
54. Galois Theory 173 x
55. IllustrationsofGaloisTheory 176 x x x
56. CyclotomicExtensions 183 x
57. Insolvability of the Quintic 185 x x x
APPENDIX Matrix Algebra x x x x 187
iv