#df #df #df
Problem Solving
#df
Approach to
#df #df
Mathematics for
#df #df
Elementary School
#df #df
Teachers, 12th Edition
#df #df #df
Rick Billstein, Shlomo
#df #df #df
Libeskind, Johnny Lott
#df #df #df
SCHOLARVAULT
,Exam
Name
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine whether the following is a statement. If it is, then also classify the statement as true or false.
1) Why don't you come here? 1)
A) True statement B) Not a statement C) False statement
Answer: B
2) This room is big. 2)
A) False statement B) True statement C) Not a statement
Answer: C
3) 5 - 1 = 4 3)
A) True statement B) Not a statement C) False statement
Answer: A
4) 7x + y = 3 4)
A) False statement B) Not a statement C) True statement
Answer: B
5) Can you bring the book? 5)
A) False statement B) True statement C) Not a statement
Answer: C
6) x + y = x - y, where y = 0 6)
A) Not a statement B) True statement C) False statement
Answer: B
7) 12 = 3y 7)
A) False statement B) True statement C) Not a statement
Answer: C
8) 2.4 = 5.2 8)
A) Not a statement B) False statement C) True statement
Answer: B
9) The state of California is in North America. 9)
A) Not a statement B) True statement C) False statement
Answer: B
10) Brazil is in Asia. 10)
A) True statement B) Not a statement C) False statement
Answer: C
1
SCHOLARVAULT
,Use #df a #df quantifier #df to #d f make #df the #d f following #d f true #df or #d f false, #df as #df indicated, #df where #df x #d f is #df a #df natural #d f number.
11) x #df+ # d f x #df= #df 6 # d f (make #dftrue) 11)
A) There #dfis #dfno #dfnatural #df number #dfx #dfsuch #df that #dfx #df + # d f x #df= #df 6.
B) There #df exists #dfa #df natural #dfnumber #df x #df such #df that #df x #df + # d f x #df= #df 6.
C) For #dfevery #dfnatural #df number #dfx, #dfx #df + # d f x #df= #df 6.
D) For #dfall #dfnatural #dfnumbers #dfx, #dfx
#df + #dfx #df= #df6. #dfAnswer: #d f B
12) x3 #df= #df8 # d f (make #dftrue) 12)
A) No #dfnatural #dfnumber #dfx #dfexists #dfsuch #dfthat #dfx3 #df= #df8.
B) Every #dfnatural #dfnumber #dfx #dfsatisfies #dfx3 #df= #df8.
C) Three #df natural #df numbers #df x #df exist #df such #df that #d f x3 # d f = # d f 8.
D) There #dfexists #dfa #dfnatural #dfnumber #dfx #dfsuch #dfthat #dfx3 #df= #df8.
Answer: # d f D
13) 2x #df+ #df 1 #df= #df5 #df- #dfx # d f (make #dftrue) 13)
A) Only #dftwo #dfnatural #dfnumbers #dfx #dfexist #dfsuch #dfthat #df2x #df+ #df1 #df= #df5 #df- #dfx.
B) No #dfnatural #d f number #df x #dfexists #df such #d f that #d f 2x #d f + # d f 1 #d f = # d f 5 # d f - # d f x.
C) For #df every #df natural #d f number #df x, #df 2x #d f + # d f 1 # d f = # d f 5 #d f - # d f x.
D) There #dfexists #dfa #dfnatural #dfnumber #dfx #dfsuch #dfthat #df2x
#df+ #df1 #df= #df5 #df- #dfx. #dfAnswer: # d f D
14) 12x #df = # d f 5x #df + # d f 7x # d f (make #df false) 14)
A) More #df than #df one #df natural #df number #dfx #d f exists #df such #df that # d f 12x #d f = #df 5x #d f + # d f 7x.
B) For #dfevery #df natural #dfnumber #df x, #df 12x #df = # d f 5x #df + # d f 7x.
C) There #df exists #dfa #df natural #dfnumber #df x #df such #dfthat #d f 12x #df = # df 5x #df+ # d f 7x.
D) There #dfis #dfno #dfnatural #dfnumber #dfx #dfsuch #dfthat #df12x
#df = #df5x #df+ #df7x. #dfAnswer: # df D
15) x #df- #df13 #df= #df13 #df- #dfx # d f (make #dffalse) 15)
A) There #d f exists #d f a # d f natural #d f number #d f x # d f such #d f that #d f x # d f - # d f 13 #df = # d f 13 #df - # d f x.
B) At #d f least #d f one # d f natural #d f number #df x #d f exists # d f such #d f that #d f x # d f - # d f 13 #df = # d f 13 #d f - # d f x.
C) There #df is #d f no #d f natural # d f number #d f x #d f such # d f that #d f x #d f - # d f 13 #df = # d f 13 #df - # d f x.
D) For #dfx #df= #df13, #dfx #df- #df13 #df= #df13 #df- #df x.
Answer: # d f C
16) 4x #df= #df7x # d f (make #dffalse) 16)
A) No # d f natural #d f number #d f x #d f satisfies #df 4x #d f = # d f 7x.
B) There #dfis #dfno #dfnatural #dfnumber #dfx #dfsuch #dfthat #df4x #df= #df7x.
C) For #dfevery #dfnatural #dfnumber #dfx,
#df 4x #df= #df7x. #dfAnswer: #d f C
Write #d f the #d f statement #d f indicated.
17) Write #dfthe #dfnegation #dfof #dfthe 17)
#dffollowing: #dfThe #dftest #dfis
#dfdifficult.
A) The #dftest #dfis #dfnot #dfeasy. B) # d f The #dftest #dfis #df very
#dfdifficult.
C) #dfThe #dftest #dfis #dfnot #dfdifficult. D) #dfThe #dftest #dfis #dfnot
#df very #dfeasy. #dfAnswer: #d f C
2
SCHOLARVAULT
, 18) Write #dfthe #dfnegation #dfof #dfthe 18)
#dffollowing: #df8 #df+ #df2 #df= #df10
A) 8 #df + # d f 2 #df= #df 12 B) # d f The #dfsum #dfof #df8 #df and #df2 #dfis #dften.
C) #d f 8 #df+ # d f 2 #df× #df10 D) # d f 8 #df+ # d f 2 #df= #df 2 #df+ # d f 8
Answer: # d f C
SHORT #df ANSWER. # d f Write #d f the #df word #df or #df phrase #d f that #df best #df completes # d f each #df statement # d f or
#df answers #df the #df question.
Provide #df an # d f appropriate #d f response.
19) Negate #dfthe #dffollowing: #dfThe #dfstore #dfis #dfsometimes #dfopen #dfon #dfSunday. 19)
Answer:
#df #d f The #dfstore #dfis #dfnever #dfopen #dfon #dfSunday.
MULTIPLE #dfCHOICE. #df Choose #dfthe #dfone #dfalternative #dfthat #dfbest #dfcompletes #dfthe #dfstatement #dfor
answers #dfthe #dfquestion. #dfConstruct #dfa #dftruth #dftable #dffor #dfthe #dfstatement.
#df
20) #df ~p 20)
#dfA~s
A) #dfp s # d f (~p B) #dfp s # d f (~p
#dfA~s) #dfA~s)
T T F T T F
T F F T F T
F T F F T T
F F F F F T
C) #dfp s (~p D) #dfp s (~p
#dfA~s) #dfA~s)
T T T T T F
T F F T F F
Answer: F# d f D T F F T F
F F T F F T
21) s #dfV~(r 21) # d f
#df Ap) p s #dfV~(r B) #dfs r p s #dfV~(r
A) s r #df Ap) #df Ap)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F T T F F T
F T T F F T T F
F T F T F T F T
F F T T F F T T
F F F T F F F F
Answer: # d f A
22) #df(p #dfA~q) 22)
#dfAt
A) # d f p q t (p #dfA~q) B) #dfp q t (p #dfA~q)
#dfAt #dfAt
T T T F T T T F
T T F F T T F F
T F T T T F T F
T F F F T F F F
F T T F F T T F
F T F F F T F T
F F T F F F T T
3
SCHOLARVAULT