100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Instructor Solution Manual for Category Theory for the Sciences, 1st Edition, 2014. David I. Spivak

Rating
-
Sold
-
Pages
187
Uploaded on
01-08-2025
Written in
2025/2026

Instructor Solution Manual for Category Theory for the Sciences, 1st Edition, 2014. David I. Spivak












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
August 1, 2025
Number of pages
187
Written in
2025/2026
Type
Other
Person
Unknown

Subjects

Content preview

,Contents

2 The Category of Sets 5
2.1 Sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Commutative diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Ologs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Fundamental Considerations in Set 23
3.1 Products and coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Finite limits in Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Spans, experiments, and matrices . . . . . . . . . . . . . . . . . . . 37
3.2.3 Equalizers and terminal objects . . . . . . . . . . . . . . . . . . . . 39
3.3 Finite colimits in Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Background: equivalence relations . . . . . . . . . . . . . . . . . . 40
3.3.2 Pushouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Other finite colimits . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Other notions in Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Currying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Arithmetic of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Subobjects and characteristic functions . . . . . . . . . . . . . . . 53
3.4.5 Surjections, injections . . . . . . . . . . . . . . . . . . . . . . . . . 55

1

,2 CONTENTS

3.4.6 Multisets, relative sets, and set-indexed sets . . . . . . . . . . . . . 57

4 Categories and Functors, Without Admitting It 59
4.1 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Monoid actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Monoid action tables . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.4 Monoid homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Paths in a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Graph homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.1 Definitions of preorder, partial order, linear order . . . . . . . . . . 84
4.4.2 Meets and joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 Opposite order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4 Morphism of orders . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.5 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Databases: schemas and instances . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 What are databases? . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.3 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Basic Category Theory 103
5.1 Categories and functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Common categories and functors from pure math . . . . . . . . . . . . . . 117
5.2.1 Monoids, groups, preorders, and graphs . . . . . . . . . . . . . . . 117
5.2.2 Database schemas present categories . . . . . . . . . . . . . . . . . 123
5.2.3 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.4 Logic, set theory, and computer science . . . . . . . . . . . . . . . 129
5.2.5 Categories applied in science . . . . . . . . . . . . . . . . . . . . . 129
5.3 Natural transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.2 Vertical and horizontal composition . . . . . . . . . . . . . . . . . 135
5.3.3 The category of instances on a database schema . . . . . . . . . . 138
5.3.4 Equivalence of categories . . . . . . . . . . . . . . . . . . . . . . . 140

, CONTENTS 3

5.4 Categories and schemas are equivalent, Cat » Sch . . . . . . . . . . . . . 143
5.4.1 The category Sch of schemas . . . . . . . . . . . . . . . . . . . . . 143
5.4.2 Proving the equivalence . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Fundamental Considerations of Categories 149
6.1 Limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.1 Products and coproducts in a category . . . . . . . . . . . . . . . . 149
6.1.2 Diagrams in a category . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.3 Limits and colimits in a category . . . . . . . . . . . . . . . . . . . 153
6.2 Other notions in Cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Opposite categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Grothendieck construction . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.3 Full subcategory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.4 Comma categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.5 Arithmetic of categories . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Categories at Work 167
7.1 Adjoint functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.1 Discussion and definition . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.2 Universal concepts in terms of adjoints . . . . . . . . . . . . . . . . 170
7.1.3 Preservation of colimits or limits . . . . . . . . . . . . . . . . . . . 172
7.1.4 Data migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Categories of functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.1 Set-valued functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.2 Database instances in other categories . . . . . . . . . . . . . . . . 176
7.2.3 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3.1 Monads formalize context . . . . . . . . . . . . . . . . . . . . . . . 178
7.3.2 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3.3 Kleisli category of a monad . . . . . . . . . . . . . . . . . . . . . . 181
7.3.4 Monads in databases . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3.5 Monads and adjunctions . . . . . . . . . . . . . . . . . . . . . . . . 182
7.4 Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4.1 Definition and classical examples . . . . . . . . . . . . . . . . . . . 183
7.4.2 Applications of operads and their algebras . . . . . . . . . . . . . . 185

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
STUDYGUIDEnTESTBANKS Arizona Medical Training Institute
View profile
Follow You need to be logged in order to follow users or courses
Sold
1020
Member since
5 year
Number of followers
864
Documents
1087
Last sold
2 weeks ago
TEST BANK , SOLUTIONS MANUAL & Exams Study guide notes

We are here to make exam preparation a breeze for students with our comprehensive collection of Exams Study guide, TEST BANKS and Solutions Manual, ensuring they are fully equipped to ace their exams.

3.8

126 reviews

5
65
4
19
3
15
2
8
1
19

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions