MAT3714
ASSIGNMENT 2
2025
, TUTORIAL 5
QUESTION 1
SOLUTION:
The population increases at the rate proportional to the number of people
present at time t.
dP
∝P
dt
dP
= kP
dt
1
∫ dP = ∫ k dt
P
ln(P) = kt + C
P(t) = ekt+C
P(t) = ekt eC ∴ Let: A = eC
P(t) = Aekt
∴ P(t) = P0
Aek(0) = P0
Ae0 = P0 ∴ e0 = 1
A = P0
P(t) = Aekt
P(t) = P0 ekt
,The population doubled in 5 years:
P(5) = 2P0
P0 ek(5) = 2P0
2P0
e5k =
P0
e5k = 2
5k = ln(2)
ln(2)
k=
5
P(t) = P0 ekt
ln(2)
( )t
P(t) = P0 e 5
i).
For the population to triple:
P(t) = 3P0
ln(2)
( )t
P0 e 5 = 3P0
ln(2)
( )t
e 5 =3
ln(2)
t = ln(3)
5
5 ln(3)
t=
ln(2)
t = 7.93 years
It will take about 7.23 years for the population to triple.
, ii).
For the population to quadruple:
P(t) = 4P0
ln(2)
( )t
P0 e 5 = 4P0
ln(2)
( )t
e 5 =4
ln(2)
t = ln(4)
5
5 ln(4)
t=
ln(2)
t = 10 years
It will take about 10 years for the population to quadruple.
QUESTION 5
SOLUTION:
dP
− ∝P
dt
dP
= −kP
dt
1
∫ dP = ∫ −k dt
P
ln(P) = −kt + C
ASSIGNMENT 2
2025
, TUTORIAL 5
QUESTION 1
SOLUTION:
The population increases at the rate proportional to the number of people
present at time t.
dP
∝P
dt
dP
= kP
dt
1
∫ dP = ∫ k dt
P
ln(P) = kt + C
P(t) = ekt+C
P(t) = ekt eC ∴ Let: A = eC
P(t) = Aekt
∴ P(t) = P0
Aek(0) = P0
Ae0 = P0 ∴ e0 = 1
A = P0
P(t) = Aekt
P(t) = P0 ekt
,The population doubled in 5 years:
P(5) = 2P0
P0 ek(5) = 2P0
2P0
e5k =
P0
e5k = 2
5k = ln(2)
ln(2)
k=
5
P(t) = P0 ekt
ln(2)
( )t
P(t) = P0 e 5
i).
For the population to triple:
P(t) = 3P0
ln(2)
( )t
P0 e 5 = 3P0
ln(2)
( )t
e 5 =3
ln(2)
t = ln(3)
5
5 ln(3)
t=
ln(2)
t = 7.93 years
It will take about 7.23 years for the population to triple.
, ii).
For the population to quadruple:
P(t) = 4P0
ln(2)
( )t
P0 e 5 = 4P0
ln(2)
( )t
e 5 =4
ln(2)
t = ln(4)
5
5 ln(4)
t=
ln(2)
t = 10 years
It will take about 10 years for the population to quadruple.
QUESTION 5
SOLUTION:
dP
− ∝P
dt
dP
= −kP
dt
1
∫ dP = ∫ −k dt
P
ln(P) = −kt + C