ASSIGNMENT 3
2024
, QUESTION 1
1.1).
⃗ = 〈1, −3, −1〉
u and a⃗ = 〈2,1, −1〉
⃗ ∙ a⃗ = 〈1, −3, −1〉 ∙ 〈2,1, −1〉
u
= 2−3+1
=0
Since the dot product is zero (u
⃗ ∙ a⃗ = 0) then the vectors u
⃗ and a⃗ are orthogonal
vectors.
1.2).
⃗ = 〈1,0, −2〉
v and ⃗ = 〈2, −1, −1〉
b
⃗ ∙ ⃗b = 〈1,0, −2〉 ∙ 〈2, −1, −1〉
v
= 2+0+2
=4
⃗ ‖ = √(1)2 + (0)2 + (−2)2
‖v
= √1 + 0 + 4
= √5
⃗ ‖ = √(2)2 + (−1)2 + (−1)2
‖b
= √4 + 1 + 1
= √6
, ⃗ ∙ ⃗b
v
cos(θ) =
‖v
⃗ ‖‖b ⃗‖
4
cos(θ) =
√5√6
4
cos(θ) =
√30
4
θ = cos−1 ( )
√30
θ = 0.752° (acute angle)
The vectors are not orthogonal, and they make an acute angle.
1.3).
⃗ ∙ ⃗b
v
projb⃗ v
⃗ = ⃗
2b
⃗‖
‖b
4
proj⃗b v
⃗ = 2
〈2, −1, −1〉
(√6)
4
⃗ = 〈2, −1, −1〉
proj⃗b v
6
2
⃗ = 〈2, −1, −1〉
proj⃗b v
3
4 2 2
⃗ = 〈 ,− ,− 〉
proj⃗b v
3 3 3
, QUESTION 2
2.1).
⃗ = 〈x, y, z〉
n
Given n
⃗ is perpendicular to all three vectors.
⃗ ∙u
n ⃗ =0
〈x, y, z〉 ∙ 〈1,1, −1〉 = 0
x+y−z= 0 1
⃗ ∙v
n ⃗ =0
〈x, y, z〉 ∙ 〈−1,1,0〉 = 0
−x + y = 0 2
⃗ ∙ ⃗w
n ⃗⃗ = 0
〈x, y, z〉 ∙ 〈−1,0,1〉 = 0
−x + z = 0 3
x+y−z=0
Solve { −x + y = 0
−x + z = 0
1 1 −1 0
Augumented matrix = [−1 1 0 | 0]
−1 0 1 0