#hg #hg #hg #hg
of Ammunition and Guns 3rd
#hg #hg #hg #hg #hg
Edition #hg
Solutions Manual Part 0 #hg #hg #hg
Donald E. #hg
#hg Carlucci Sidney #hg
#hg S. Jacobson
#hg
** Immediate Download
#hg #hg
** Swift Response
#hg #hg
** All Chapters included
#hg #hg #hg
2.1 The Ideal Gas Law
Problem 1 - Assume we have a quantity of 10 grams of 11.1% nitrated nitrocellulose
(C6H8N2O9) and it is heated to a temperature of 1000K and changes to gas somehow
without changing chemical composition. If the process takes place in an expulsion cup
with a volume of 10 in3, assuming ideal gas behavior, what will the final pressure be in
psi?
lbf
Answer p 292
in 2
SCHOLARVAULT
, Solution:
This problem is fairly straight-forward except for the units. We shall write our ideal gas
law and let the units fall out directly. The easiest form to start with is equation (IG-4)
pV mg RT (IG-4)
Rearranging, we have
mg RT
p
V
Here we go
10g 1 kg 8.314 kJ 1 kgmol 737.6ft lbf 12in 1000K
1000 g kgmol K
252 kg C H N O kJ ft
2 9
p
6
10 in3
8
lbf
p 292
in 2
You will notice that the units are all screwy – but that’s half the battle when working
these problems! Please note that this result is unlikely to happen. If the chemical
composition were reacted we would have to balance the reaction equation and would
have to use Dalton’s law for the partial pressures of the gases as follows. First, assuming
no air in the vessel we write the decomposition reaction.
C6 H8 N 2 O9 4H 2 O 5CO N 2 Cs
Then for each constituent (we ignore solid carbon) we have
SCHOLARVAULT
, NiT
pi # h g # h g
V
So #hgwe #hgcan #hgwrite kgmolC6 #hgH8 #hgN#hg2O9 # h g
41 kgmol
# h g
kg #hg
8.314 kJ 1000K#hg # h g 1 # h g #hg 10 g #hg # h g
#hg C
# h g C H #hgN#hg O # h g
6 8 2 9
H #hgO
kgmol # h g kgmol #hg- #hgK#hg
#hgH8 #hgN #hg2O 9 # h g
#hg 252 # h g kg
1,000 # h g #hgg
C #hgH #hgN #hgO #hg #hg C # h g H # h g N # h g O C # h g H # h g
#h g O # h g # h g
6 # h g 8 # h g 2 # h g 9 # h g
2
6 # h g 8
2 # h g 9 # h g # h g
p
# h g 6 # h g 8 # h g 2 # h g 9
H#hg2O #hg # h g 3 #hg
1 kJ 1 # h g #hgft #hg
#hg
in # h g # h g #hg#hg # h g # h g
10 # h g
#hg737.6#hgft # h g #hglbf #h g #hg12 #hgin#hg
lbf #hg
#hg1,168
pH2O in#hg2#hg
1 # h g #hgkgmolC6 #hgH8 #hgN2O9 # h g
5 kgmolCO 8.314 kJ
1000K #hg # h g
10g # h g # h g 1 #hg
kg#hgC6 #hgH8 #hgN2O9 # h g
# h g
C #hgH
#hgkgmol kgmol #hg-#hgK 252 kg 1,000 g
6 # h g 8 # h g 2 # h g 9
C #hgH #hgN #hgO #hg #hg C # h g H # h g N # h g O C # h g H # h g
# h g N # h gO
# h g O # h g # h g
CO
p
6 # h g 8 # h g 2 # h g 9 # h g
# h g 3 #h g 6 #hg8 # h
#h g 9 1# h g # hg ft#hg
6#hg 8 # h g 2#hg 9
10 # h g in # h g # h g # h g # h g
1 kJ
pCO
#hg1,460 #hg737.6#hgft #h g #hglbf # h g #hg12 #hgin #hg
# h g
lbf #hg
#hg
in#hg2 #hg #hg 1000K#hg # h g 1 # h g
10g
kJ
1 kgmol 8.314 C6 #hgH8
#hg N2O9
# h g # h g 1 C6 #hgH8 #hgN2O9 # h
kgmol kg
2
#hg
# h g # h g
N
C6 #hgH8
kgmol
#hg kgmol #hg- 252 #hg #hg kg #hgN2O9
1,000 g
#hgK
N2
C #hgH #hgN #hgO #hg #hg # h g
C #hgH #hgN #hgO C #hg
# h g N #hgO # h g # h g
p
6 # h g 8 # h g 2 # h g 9 # h g 6 # h g 8 # h g 2 # h g 9 6 # h g 8
# h g 2 # h g 9 # h g # h g 1
lbf 10 in#hg3 #hg kJ # h g 1# h g #hgft#hg
# h g
pN # h g # h g #hg737.6#hg#hgft #hg #hglbf #hg #hg12 #hgin#hg
# h g 292
SCHOLARVAULT
, in#hg2 #hg
2
2 2
Then #hgthe #hgtotal #hgpressure #hgis
p #hg # h g pH#hgO#hg #hg#hglbf lbf lbf # h g
p # h g pN
#hglb fCO#hg
# h g
p #hg#hg1,168 #hgin#hg2 # h g #hg#hg1,460 #hg292 #hg2,920
in#hg2 #hg in#hg2 #hg in#hg2 #hg
2.2 Other Gas Laws #hg #hg
Problem #hg2 #hg- # h g Perform #hgthe #hgsame #hgcalculation #hgas #hgin #hgproblem #hg1 #hgbut #hguse #hgthe
3
#hgNoble-Abel #hg equation #hg of #hg state #hg and #hg assume #hg the #hg covolume #hg to #hg be #hg 32.0 #hg in /lbm
SCHOLARVAULT