SOLUTIONS
, Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1. Vectors, Tensors, and Equations of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Energy Principles and Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . .19
3. Classical Theory of Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4. Analysis of Plate Strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5. Analysis of Circular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6. Bending of Simply Supported Rectangular Plates . . . . . . . . . . . . . . . . . . 91
7. Bending of Rectangular Plates with Various
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8. General Buckling of Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9. Dynamic Analysis of Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10. Shear Deformation Plate Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
11. Theory and Analysis of Shells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
12. Finite Element Analysis of Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
@Seismicisolation
@Seismicisolation
, 1
Vectors, Tensors, and
Equations of Elasticity
1.1 Prove the following properties of δij and εijk (assume i, j = 1, 2, 3 when they
are dummy indices):
(a) Fij δjk = Fik
(b) δij δij = δii = 3
(c) εijk εijk = 6
(d) εijk Fij = 0 whenever Fij = Fji (symmetric)
Solution:
1.1(a) Expanding the expression
Fij δjk = Fi1 δ1k + Fi2 δ2k + Fi3 δ3k
Of the three terms on the right hand side, only one is nonzero. It is equal to Fi1 if
k = 1, Fi2 if k = 2, or Fi3 if k = 3. Thus, it is simply equal to Fik .
1.1(b) By actual expansion, we have
δij δij = δi1 δi1 + δi2 δi2 + δi3 δi3
= (δ11 δ11 + 0 + 0) + (0 + δ22 δ22 + 0) + (0 + 0 + δ33 δ33 )
=3
and
δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3
Alternatively, using Fij = δij in Problem 1.1a, we have δij δjk = δik , where i and k
are free indices that can any value. In particular, for i = k, we have the required
result.
1.1(c) Using the ε-δ identity and the result of Problem 1.1(b), we obtain
εijk εijk = δii δjj − δij δij = 9 − 3 = 6
@Seismicisolation
@Seismicisolation
, 2 Theory and Analysis of Elastic Plates and Shells
1.1(d) We have
Fij εijk = −Fij εjik (interchanged i and j)
= −Fji εijk (renamed i as j and j as i)
Since Fji = Fij , we have
0 = (Fij + Fji ) εijk
= 2Fij εijk
The converse also holds, i.e., if Fij εijk = 0, then Fij = Fji . We have
0 = Fij εijk
1
= (Fij εijk + Fij εijk )
2
1
= (Fij εijk − Fij εjik ) (interchanged i and j)
2
1
= (Fij εijk − Fji εijk ) (renamed i as j and j as i)
2
1
= (Fij − Fji ) εijk
2
from which it follows that Fji = Fij .
♠ New Problem 1.1: Show that
∂r xi
=
∂xi r
Solution: Write the position vector in cartesian component form using the index
notation
r = xj êj (1)
Then the square of the magnitude of the position vector is
r2 = r · r = (xi êi ) · (xj êj ) = xi xj δij
= xi xi = xk xk (2)
Its derivative of r with respect to xi can be obtained from
∂r2 ∂
= (xk xk )
∂xi ∂xi
∂xk ∂xk
= xk + xk
∂xi ∂xi
∂xk
=2 xk = 2δik xk = 2xi
∂xi
Hence
∂r xi
= (3)
∂xi r
@Seismicisolation
@Seismicisolation