PRACTICE EXAM QUESTIONS AND
CORRECT ANSWERS (VERIFIED
ANSWERS) PLUS RATIONALES 2025
1. What is the value of xxx if 3x−7=2x+53x - 7 = 2x + 53x−7=2x+5?
A. 2
B. 5
C. 12
D. -12
Subtracting 2x2x2x from both sides gives x−7=5x - 7 = 5x−7=5; add 7 to
both sides: x=12x = 12x=12.
2. Simplify: (2x2y)(3xy2)(2x^2y)(3xy^2)(2x2y)(3xy2)
A. 5x3y35x^3y^35x3y3
B. 6x3y36x^3y^36x3y3
C. 6x2y26x^2y^26x2y2
D. 5x2y25x^2y^25x2y2
Multiply coefficients and add exponents: 2⋅3=6,x2⋅x=x3,y⋅y2=y32 \cdot 3 =
6, x^2 \cdot x = x^3, y \cdot y^2 = y^32⋅3=6,x2⋅x=x3,y⋅y2=y3.
3. Solve for xxx: x+2x−3=2\frac{x + 2}{x - 3} = 2x−3x+2=2
A. 0
B. 4
C. 5
D. 8
Cross-multiplying gives ( x + 2 = 2(x - 3) \Rightarrow x + 2 = 2x - 6
\Rightarrow -x = -8 \Rightarrow x = 8.
4. What is the solution to the inequality 5−2x>115 - 2x > 115−2x>11?
A. x<−3x < -3x<−3
B. x>−3x > -3x>−3
C. x>3x > 3x>3
, D. x<3x < 3x<3
Subtract 5: −2x>6⇒x<−3-2x > 6 \Rightarrow x < -3−2x>6⇒x<−3
5. Factor: x2−9x+20x^2 - 9x + 20x2−9x+20
A. (x−4)(x−5)(x - 4)(x - 5)(x−4)(x−5)
B. (x−4)(x−5)(x - 4)(x - 5)(x−4)(x−5)
C. (x+4)(x−5)(x + 4)(x - 5)(x+4)(x−5)
D. (x+5)(x−4)(x + 5)(x - 4)(x+5)(x−4)
Factors of 20 that sum to -9 are -4 and -5.
6. What is the domain of the function f(x)=1x2−4f(x) = \frac{1}{x^2 -
4}f(x)=x2−41?
A. All real numbers
B. x≠0x \neq 0x =0
C. x≠±2x \neq \pm 2x =±2
D. x>0x > 0x>0
Denominator zero when x2−4=0⇒x=±2x^2 - 4 = 0 \Rightarrow x = \pm
2x2−4=0⇒x=±2
7. Solve: x+1=4\sqrt{x + 1} = 4x+1=4
A. 15
B. 16
C. 17
D. 18
Square both sides: x+1=16⇒x=15x + 1 = 16 \Rightarrow x =
15x+1=16⇒x=15
8. Which of the following is equivalent to log232\log_2 32log232?
A. 4
B. 5
C. 6
D. 2
Since 25=322^5 = 3225=32, log232=5\log_2 32 = 5log232=5
9. If f(x)=3x2+2x−1f(x) = 3x^2 + 2x - 1f(x)=3x2+2x−1, find f(−1)f(-1)f(−1)
A. -2
B. 0
C. 1
D. 4
Substitute: 3(−1)2+2(−1)−1=3−2−1=03(-1)^2 + 2(-1) - 1 = 3 - 2 - 1 =
03(−1)2+2(−1)−1=3−2−1=0
10.Find the slope of the line passing through (2, 3) and (5, 11).
A. 3
B. 2
C. 83\frac{8}{3}38
, D. 38\frac{3}{8}83
Slope = 11−35−2=83\frac{11 - 3}{5 - 2} = \frac{8}{3}5−211−3=38
11.What is the equation of a line with slope 2 and y-intercept -4?
A. y=2x+4y = 2x + 4y=2x+4
B. y=−2x−4y = -2x - 4y=−2x−4
C. y=2x−4y = 2x - 4y=2x−4
D. y=−2x+4y = -2x + 4y=−2x+4
Use slope-intercept form: y=mx+b⇒y=2x−4y = mx + b \Rightarrow y = 2x
- 4y=mx+b⇒y=2x−4
12.Simplify: 2x2−84x\frac{2x^2 - 8}{4x}4x2x2−8
A. x−2x\frac{x - 2}{x}xx−2
B. x+2x\frac{x + 2}{x}xx+2
C. x2−4x\frac{x^2 - 4}{x}xx2−4
D. x2+4x\frac{x^2 + 4}{x}xx2+4
Factor numerator: 2(x2−4)=2(x−2)(x+2)2(x^2 - 4) = 2(x - 2)(x +
2)2(x2−4)=2(x−2)(x+2); cancel with denominator.
13.What is the value of sin(30∘)\sin(30^\circ)sin(30∘)?
A. 0
B. 12\frac{1}{2}21
C. 32\frac{\sqrt{3}}{2}23
D. 1
From unit circle: sin(30∘)=1/2\sin(30^\circ) = 1/2sin(30∘)=1/2
14.The graph of y=∣x−3∣y = |x - 3|y=∣x−3∣ is a:
A. V-shaped graph shifted 3 units right
B. V-shaped graph shifted 3 units left
C. Parabola
D. Line
Absolute value graphs are V-shaped; x−3x - 3x−3 shifts right.
15.If a2=49a^2 = 49a2=49, then:
A. a=7a = 7a=7
B. a=±7a = \pm 7a=±7
C. a=−7a = -7a=−7
D. a=0a = 0a=0
Square roots have both positive and negative values.
16.Convert 0.25 to a fraction:
A. 13\frac{1}{3}31
B. 15\frac{1}{5}51