100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Econometrics Course Summary: Key Concepts for Success

Rating
-
Sold
-
Pages
53
Uploaded on
19-06-2025
Written in
2023/2024

This summary provides a clear overview of essential econometrics principles, including regression analysis, hypothesis testing, and model specification. Designed to help students grasp complex statistical methods, this concise resource is ideal for exam preparation and coursework support. Enhance your understanding of econometrics with this valuable summary available on Stuvia!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 19, 2025
Number of pages
53
Written in
2023/2024
Type
Summary

Subjects

Content preview

Econometrics


June 19, 2025




1

,Econometrics


Contents
1 Lecture 1: Introduction 4
1.1 Global data lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 what is econometrics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 from theory to empirics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 how we structure data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Causality and ceteris paribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 why is data analysis an important policy tool? . . . . . . . . . . . . . . . . . . . . 6
1.6 example 1: achievement and hours spent studying . . . . . . . . . . . . . . . . . 6
1.7 basic maths and statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 simple regression: two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Lecture 2: Regression Analysis 11
2.1 steps to be taken in regression analysis . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Classical assumptions OLS regression model . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multivariate linear regression model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 F-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Credible standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Credible standard errors with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 lecture 3: Dummies, interactions, etc. 16
3.1 Interpretation of coefficient estimates . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sums of squares and R 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Dummy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 dummy’s in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Dummy variables with more than 2 categories . . . . . . . . . . . . . . . . 19
3.4 Interaction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Nonlinearities and missing variables . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Lecture 4: Time series I 21
4.1 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Confidence intervals for β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Lecture 5: Time series II 26
5.1 autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Consequences of pure autocorrelation . . . . . . . . . . . . . . . . . . . . 27
5.2 Detection of Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2

,Econometrics


5.3 correction for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Lecture 6: Panel Data I 29
6.1 types of panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Omitted variable bias/Confounders . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Panel data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Lecture 7: Panel Data II 33
7.1 techniques of panel data estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1 Pooled OLS with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Between estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3 first differences estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.4 Least squares dummy variables . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.5 Fixed effects (within) estimator . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.6 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Time fixed effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Unit and time fixed effects (two way fixed effects) . . . . . . . . . . . . . . . . . . 37
7.4 Randem effects (RE) estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Violated OLS assumption and Serial correlation: clustered standard errors (SE) 38
7.6 Which estimator is appropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 summary 40




3

, Econometrics


1 Lecture 1: Introduction
1.1 Global data lab
Gobal data lab: performing researh and developing instruments for measuring and analysing
progress of societies.
The instruments include indicators, specialied databases, and web-based tools for translat-
ing data into understandable and usable knowledge.
At the heart of the data lab is the area database, a big data infrastructure with information
on over 35 milion individuals in 130+ countries.
Development indicators for 1300+ sub-national regions (provinces) within countries.


1.2 what is econometrics?
Econometrics is Theory/model, data and statistics all in 1.
Practical approach:
Economic theory → Mathematical model of theory → Econometric model of theory → Data
→ Estimation of econometric model → Hypothesis testing → Forecasting or prediction →
Using the model for control or policy purposes.

Statistical tools are used to estimate economic relationships, test economic theories and
evaluate policies.
Application of economic theory to real world data; formal economic models can be tested:
utility maximisation, supply and demand.
Theory may be ambiguous as to the effect of some policy change → program evaluation.
Rare in economics to have experimental data! Need to use nonexperimental, or observa-
tional data to make inferences, i.e. to draw conclusions.
Examples:
• Evaluation of a government policy

• Returns to schooling

• Returns to different investment funds

• Impact of conflict on sustainable development

1.2.1 from theory to empirics

Observations of real world relationships
• Systematic discription = Economic model simplifies, leaves out some factors, often
there are no functional form assumptions)

• Application of economic model to the real world: Econometric/Empirical model (impose
functional form, some factors cannot be observed

4
$7.91
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
stuviatraitor201
2.5
(2)

Also available in package deal

Get to know the seller

Seller avatar
stuviatraitor201 Radboud Universiteit Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
7 months
Number of followers
0
Documents
14
Last sold
2 weeks ago

2.5

2 reviews

5
0
4
0
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions