100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

EDEXCEL AS FM CORE PURE PAPER 2025

Rating
-
Sold
1
Pages
36
Grade
A+
Uploaded on
17-06-2025
Written in
2024/2025

PAPER ONLY! NO MARK SCHEME!

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Study Level
Examinator
Subject
Unit

Document information

Uploaded on
June 17, 2025
Number of pages
36
Written in
2024/2025
Type
Exam (elaborations)
Contains
Only questions

Subjects

Content preview

Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Monday 12 May 2025
Afternoon (Time: 1 hour 40 minutes) Paper
reference 8FM0/01
Further Mathematics
 


Advanced Subsidiary
PAPER 1: Core Pure Mathematics

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations. Calculators
must not have the facility for symbolic algebra manipulation, differentiation and
integration, or have retrievable mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.

• Fill
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
in the boxes at the top of this page with your name,

• clearly
centre number and candidate number.
Answer all questions and ensure that your answers to parts of questions are

• Answer
labelled.
the questions in the spaces provided

• You
– there may be more space than you need.
should show sufficient working to make your methods clear.

• Inexact
Answers without working may not gain full credit.
answers should be given to three significant figures unless
otherwise stated.
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.

• – use this asfora guide
are 11 questions in this question paper. The total mark for this paper is 80.
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.

• Check your answers if you have time at the end.
Try to answer every question.
Turn over


P75670A
©2025 Pearson Education Ltd.
Y:1/1/1/
*P75670A0136*

,1. z = 3 – 3i
(a) Write z in the form r (cos θ + i sin θ) where –π < θ  π




DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
(2)
(b) Show and label on a single Argand diagram
(i) the point P representing z
(ii) the point Q representing iz
(2)
(c) Describe the geometrical transformation that maps P onto Q
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P75670A0236* 

, Question 1 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA




_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 6 marks)

3
 *P75670A0336* Turn over

, 2. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.




DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
f (z) = 4z3 – 12z2 – 95z + 325

Given that f (–5) = 0

(a) determine f (z) in the form (z + a)(bz2 + cz + d) where a, b, c and d are integers.
(3)
8i
(b) Hence show that the complex roots of f (z) = 0 are
2 (2)
(c) Determine the values of z such that f (2z – 1) = 0
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

4



*P75670A0436* 

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
alevelstem2025 Abacus College, Oxford
Follow You need to be logged in order to follow users or courses
Sold
136
Member since
11 months
Number of followers
0
Documents
28
Last sold
18 hours ago
AS/A Level 2025 papers.

Ace your mocks with the papers your school will undoubtedly use. Especially good for year 12s as this is the year your school will send UCAS predicted grades. (Essential for applying to universities)

4.3

21 reviews

5
14
4
1
3
5
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions