GCSE EDEXCEL MATHS HIGHER 2025/2026 VERIFIED QUESTIONS AND ANSWERS
GUARANTEED DISTINCTION
area |of |a |circle |- |ANS-
surface |area |of |a |sphere |- |ANS-
surface |area |of |a |cone |- |ANS-πr |x |slanted |length |x |πr^2
volume |of |cone |- |ANS-
volume |of |a |sphere |- |ANS-
area |of |trapezium |- |ANS-1/2(a+b) |x |height
circumference |of |a |circle |- |ANS-π |x |d
volume |of |a |cuboid |- |ANS-l |x |w |x |h
volume |of |a |cylinder |- |ANS-
volume |of |a |pyramid |- |ANS-1/3 |x |area |of |base |x |h
distance |- |ANS-speed |x |time
density |- |ANS-mass/volume
pressure |- |ANS-force/area
,Pythagoras' |Theorem |- |ANS-a^2 |+ |b^2 |= |c^2
Quadratic |equation |- |ANS-when |ax^2 |+ |bx |+ |c |= |0
Sine |rule |- |ANS-a/sinA |= |b/sinB |= |c/sinC
Cosine |rule |- |ANS-
Area |of |a |triangle |- |ANS-1/2 |x |a |x |b |x |sinC
area |of |a |sector |- |ANS-angle/360 |x |area |of |full |circle
segment |area |- |ANS-sector |area |- |area |of |triangle
x |angles |- |ANS-equal
corresponding |angles |- |ANS-equal
alternate |angles |- |ANS-equal
co-interior |angles |- |ANS-add |to |180
total |of |exterior |angles |- |ANS-360
1 |exterior |angle |- |ANS-360/number |of |sides
sum |of |interior |angles |- |ANS-(sides |- |2) |x |180
, sin/cos/tan |45, |lengths= |- |ANS-
sin/cos/tan |30 |or |60, |lengths= |- |ANS-
a^m |x |b^n |- |ANS-ab^m+n
a^m |/ |b^n |- |ANS-a/b^m-n
a^0 |- |ANS-1
a^1 |- |ANS-a
(a^m)^n |- |ANS-a^mxn
(a/m)^n |- |ANS-a^n/m^n
a^-m |- |ANS-1/a^m
a^1/m |- |ANS-^m√a
a^m/n |- |ANS-(^n√a)^m
3D |Pythagoras' |theorem |- |ANS-a^2 |+ |b^2 |+ |c^2 |= |d^2
when |to |use |cosine |rule |- |ANS-2 |sides |and |an |angle |enclosed |by |them
all |3 |sides |no |angle
when |to |use |sine |rule |- |ANS-2 |angles |any |side
2 |sides |and |an |angle |thats |not |enclosed |by |them
GUARANTEED DISTINCTION
area |of |a |circle |- |ANS-
surface |area |of |a |sphere |- |ANS-
surface |area |of |a |cone |- |ANS-πr |x |slanted |length |x |πr^2
volume |of |cone |- |ANS-
volume |of |a |sphere |- |ANS-
area |of |trapezium |- |ANS-1/2(a+b) |x |height
circumference |of |a |circle |- |ANS-π |x |d
volume |of |a |cuboid |- |ANS-l |x |w |x |h
volume |of |a |cylinder |- |ANS-
volume |of |a |pyramid |- |ANS-1/3 |x |area |of |base |x |h
distance |- |ANS-speed |x |time
density |- |ANS-mass/volume
pressure |- |ANS-force/area
,Pythagoras' |Theorem |- |ANS-a^2 |+ |b^2 |= |c^2
Quadratic |equation |- |ANS-when |ax^2 |+ |bx |+ |c |= |0
Sine |rule |- |ANS-a/sinA |= |b/sinB |= |c/sinC
Cosine |rule |- |ANS-
Area |of |a |triangle |- |ANS-1/2 |x |a |x |b |x |sinC
area |of |a |sector |- |ANS-angle/360 |x |area |of |full |circle
segment |area |- |ANS-sector |area |- |area |of |triangle
x |angles |- |ANS-equal
corresponding |angles |- |ANS-equal
alternate |angles |- |ANS-equal
co-interior |angles |- |ANS-add |to |180
total |of |exterior |angles |- |ANS-360
1 |exterior |angle |- |ANS-360/number |of |sides
sum |of |interior |angles |- |ANS-(sides |- |2) |x |180
, sin/cos/tan |45, |lengths= |- |ANS-
sin/cos/tan |30 |or |60, |lengths= |- |ANS-
a^m |x |b^n |- |ANS-ab^m+n
a^m |/ |b^n |- |ANS-a/b^m-n
a^0 |- |ANS-1
a^1 |- |ANS-a
(a^m)^n |- |ANS-a^mxn
(a/m)^n |- |ANS-a^n/m^n
a^-m |- |ANS-1/a^m
a^1/m |- |ANS-^m√a
a^m/n |- |ANS-(^n√a)^m
3D |Pythagoras' |theorem |- |ANS-a^2 |+ |b^2 |+ |c^2 |= |d^2
when |to |use |cosine |rule |- |ANS-2 |sides |and |an |angle |enclosed |by |them
all |3 |sides |no |angle
when |to |use |sine |rule |- |ANS-2 |angles |any |side
2 |sides |and |an |angle |thats |not |enclosed |by |them