100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary powerpoint slides practicals data mining

Rating
-
Sold
-
Pages
24
Uploaded on
29-05-2025
Written in
2024/2025

This is a summary of the given powerpoint slides during the practicals. It contains information of the slides including my own notes.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 29, 2025
Number of pages
24
Written in
2024/2025
Type
Summary

Subjects

Content preview

Table of Contents

Summary practical PPT data mining .............................................................................................. 3

Practical 1: Data import/export, data types and manipulation......................................................... 3
1. Introduction to R ..................................................................................................................... 3
1.1. A typical R-command ...................................................................................................... 3
1.2. R-studio .......................................................................................................................... 3
2. Data import, export and manipulation ...................................................................................... 4
2.1. Importing and exporting data ........................................................................................... 4
2.2. Types of data ................................................................................................................... 4
2.3. Indexing and selection ..................................................................................................... 5
3. Plotting in R ............................................................................................................................. 6

Practical 2: Statistical analysis is R ............................................................................................... 7
1. Independent sample t-test....................................................................................................... 7
2. Parametric testing and normality.............................................................................................. 7
2.1. Are my data normal enough? ............................................................................................ 7
2.2. Formal test of normality ................................................................................................... 7
3. Simple linear regression .......................................................................................................... 8
3.1. Numeric linear regression ................................................................................................ 8
3.2. Analysis in R .................................................................................................................... 9
4. Analysis of variance ................................................................................................................ 9
4.1. Dummy coding ................................................................................................................ 9
4.2. ANOVA model ................................................................................................................. 9
4.3. Dummy variable ............................................................................................................ 10
4.4. Interpretation of coeLicients .......................................................................................... 10
4.5. Inference in ANOVA ....................................................................................................... 10
4.6. Analysis in R .................................................................................................................. 10

Practical 3: Automation, add-on packages and reshaping .............................................................. 11
1. Automation of repetitive analyses ...........................................................................................11
1.1. Repetitive analysis......................................................................................................... 11
1.2. For-loop ........................................................................................................................ 11
1.3. Automation with new function........................................................................................ 12
1.4. Combine list and for-loop .............................................................................................. 13
2. Add-on packages ...................................................................................................................13
2.1. Base package ................................................................................................................ 13
2.2. Package installation ...................................................................................................... 13
2.3. Activate a package......................................................................................................... 14
3. Reshaping data ......................................................................................................................14
3.1. Data reshaping .............................................................................................................. 14
3.2. Aggregation ................................................................................................................... 14

Principal 4: component analysis and cluster analysis.................................................................... 15
1. Principal Components analysis ..............................................................................................15
1.1. Multidimensional data ................................................................................................... 15
1.2. Principal Component analysis........................................................................................ 15




1

, 2. Cluster analysis .....................................................................................................................16

Practical 5: Multiple linear regression and linear mixed models ..................................................... 17
1. Multiple linear regression........................................................................................................17
1.1. Example 1 ..................................................................................................................... 17
1.2. Categorical covariates ................................................................................................... 17
1.3. Inference on ANCOVA model ......................................................................................... 17
1.4. Main eLects vs interactions ........................................................................................... 18
1.5. Modelling interactions ................................................................................................... 18
1.6. ANCOVA with interaction ............................................................................................... 18
1.7. Graphical interpretation ................................................................................................. 18
1.8. Stepwise backward model building ................................................................................ 19
1.9. Stepwise model building ................................................................................................ 19
1.10. Analysis in R .............................................................................................................. 19
1.11. Further ..................................................................................................................... 20
2. Linear mixed models for analysis of non-independent data ......................................................20
2.1. Non-independent data................................................................................................... 20
2.2. Examples ...................................................................................................................... 20
2.3. Analysis clustered data .................................................................................................. 21
2.4. Clustered data .............................................................................................................. 21
2.5. Linear mixed model ....................................................................................................... 23
2.6. Intraclass coeLicient (ICC)............................................................................................. 23
2.7. More advanced linear mixed models .............................................................................. 23
2.8. Linear mixed models in R ............................................................................................... 24




2

, Summary practical PPT data mining

Practical 1: Data import/export, data types and
manipulation
1. Introduction to R
1.1. A typical R-command




- Seq = sequency
o A func1on that generates a sequence of numbers à a vector
- Vector = one dimensional matrix (column or row)


1.2. R-studio
- Script: add commands, save for later use
- Prompt: here you can directly type in commands at the
prompt. Easy for a quick check or calcula1on that you
don’t want to include into the code
- Work space: all objects that are stored in the R memory
- Various: here you can find your graphs but also some
more explana1on
o If you type ‘?seq’ in prompt, you see the
explana1on in various
- Assignments
o Getwd(): to get your current WD
o Setwd(“C:\temp\...”): change WD
o List.files(getwd()): shows files in current WD
o Read.table(“myInput.txt”)
o Write.table(“myOutput.txt”)




3

, 2. Data import, export and manipulation
2.1. Impor7ng and expor7ng data
- Read-in func1on
o Read.table(file, header = FALSE, sep = "", quote = "\"'", dec = ".", row.names,
col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), encoding = "unknown")
§ File = name of the file
§ Header = is there a first line containing the names of the variables. R tells we
need to supply a logical (means you need to tell true or false)
§ Sep = field separater, which character is used to separate the columns
§ Dec = character used for decimal points, the default seeng in R is “.”. If your
file has “.”, you don’t need to supply this argument
§ Na.string = missing value indicator, default is NA, of missing value is NA, you
don’t need this argument, but if it is “?” you need this
§ StringsAsFactors = TRUE if variables are read in as factors
- Things to avoid
o Header line
§ ‘special’ characters in headers (# - &%$?@;-)
§ Columns not having header
o Cells with formula
§ Copy, PasteSpecial, Values
o Empty cells
- Expor1ng a dataset
o Write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA",
dec = ".", row.names = TRUE, col.names = TRUE, qmethod = c("escape", "double"))
§ Quote = TRUE if a set is true, factors will be surrounded by “” à don’t want
that so quote = FALSE
§ Sep = the field separator, we don’t want white space, we want a tap à
sep=”/t”
§ Row.names = TRUE: a logical that indicate whether the row names of the
data frame are to be wrinen along with x, this means that the row names are
exported with the rest of the table


2.2. Types of data
- 4 main types (or classes) of variables
o Numeric: integer or floa1ng point
o Character: text string
o Factor: categorical variable with limited number of levels, Ordered or not
o Logical: TRUE or FALSE
- Convert data types - coercion
o as.numeric()
o as.character()
o as.logical()
o as.factor()
- Func1ons can operate differently according to data type
o ANOVA vs. regression



4
$4.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
WillemsenAmber
4.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
WillemsenAmber Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
1 year
Number of followers
0
Documents
42
Last sold
1 week ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions