100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

comprehensive note on calculus 100% verified

Rating
-
Sold
-
Pages
606
Uploaded on
26-05-2025
Written in
2022/2023

the note encompasses all important aspect of calculus, These note are designed to provide a comprehensive introduction to calculus, covering topics like limits, derivatives, integrals, and applications. Additionally, Collin College offers MATH 1325, which is a calculus course specifically for business and social science students.

Show more Read less
Institution
Collin County Community College
Course
Math1325 (MATH1325)











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Collin County Community College
Course
Math1325 (MATH1325)

Document information

Uploaded on
May 26, 2025
Number of pages
606
Written in
2022/2023
Type
Class notes
Professor(s)
George brinton thomas jr.
Contains
All classes

Subjects

  • a one calculus note

Content preview

, Chapter




1 PRELIMINARIES

OVERVIEW This chapter reviews the basic ideas you need to start calculus. The topics in-
clude the real number system, Cartesian coordinates in the plane, straight lines, parabolas,
circles, functions, and trigonometry. We also discuss the use of graphing calculators and
computer graphing software.



1.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.


Real Numbers
Much of calculus is based on properties of the real number system. Real numbers are
numbers that can be expressed as decimals, such as
3
- = - 0.75000 Á
4
1
= 0.33333 Á
3
22 = 1.4142 Á
The dots Á in each case indicate that the sequence of decimal digits goes on forever.
Every conceivable decimal expansion represents a real number, although some numbers
have two representations. For instance, the infinite decimals .999 Á and 1.000 Á repre-
sent the same real number 1. A similar statement holds for any number with an infinite tail
of 9’s.
The real numbers can be represented geometrically as points on a number line called
the real line.

–2 –1 – 3 0 1 1 兹2 2 3␲ 4
4 3

The symbol  denotes either the real number system or, equivalently, the real line.
The properties of the real number system fall into three categories: algebraic proper-
ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real
numbers under the usual rules of arithmetic. You can never divide by 0.

1

,2 Chapter 1: Preliminaries


The order properties of real numbers are given in Appendix 4. The following useful
rules can be derived from them, where the symbol Q means “implies.”


Rules for Inequalities
If a, b, and c are real numbers, then:
1. a 6 b Q a + c 6 b + c
2. a 6 b Q a - c 6 b - c
3. a 6 b and c 7 0 Q ac 6 bc
4. a 6 b and c 6 0 Q bc 6 ac
Special case: a 6 b Q -b 6 - a
1
5. a 7 0 Q a 7 0

1 1
6. If a and b are both positive or both negative, then a 6 b Q 6 a
b



Notice the rules for multiplying an inequality by a number. Multiplying by a positive num-
ber preserves the inequality; multiplying by a negative number reverses the inequality.
Also, reciprocation reverses the inequality for numbers of the same sign. For example,
2 6 5 but - 2 7 - 5 and 1>2 7 1>5.
The completeness property of the real number system is deeper and harder to define
precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly
speaking, it says that there are enough real numbers to “complete” the real number line, in
the sense that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if
the real number system were not complete. The topic is best saved for a more advanced
course, but Appendix 4 hints about what is involved and how the real numbers are con-
structed.
We distinguish three special subsets of real numbers.
1. The natural numbers, namely 1, 2, 3, 4, Á
2. The integers, namely 0, ; 1, ;2, ; 3, Á
3. The rational numbers, namely the numbers that can be expressed in the form of a
fraction m>n, where m and n are integers and n Z 0. Examples are
1 4 -4 4 200 57
, - = = , , and 57 = .
3 9 9 -9 13 1
The rational numbers are precisely the real numbers with decimal expansions that are
either
(a) terminating (ending in an infinite string of zeros), for example,
3
= 0.75000 Á = 0.75 or
4
(b) eventually repeating (ending with a block of digits that repeats over and over), for
example
The bar indicates the
23
= 2.090909 Á = 2.09 block of repeating
11 digits.

, 1.1 Real Numbers and the Real Line 3

A terminating decimal expansion is a special type of repeating decimal since the ending
zeros repeat.
The set of rational numbers has all the algebraic and order properties of the real num-
bers but lacks the completeness property. For example, there is no rational number whose
square is 2; there is a “hole” in the rational line where 22 should be.
Real numbers that are not rational are called irrational numbers. They are character-
ized by having nonterminating and nonrepeating decimal expansions. Examples are
p, 22, 2 3
5, and log10 3. Since every decimal expansion represents a real number, it
should be clear that there are infinitely many irrational numbers. Both rational and irra-
tional numbers are found arbitrarily close to any point on the real line.
Set notation is very useful for specifying a particular subset of real numbers. A set is a
collection of objects, and these objects are the elements of the set. If S is a set, the notation
a H S means that a is an element of S, and a x S means that a is not an element of S. If S
and T are sets, then S ´ T is their union and consists of all elements belonging either to S
or T (or to both S and T). The intersection S ¨ T consists of all elements belonging to both
S and T. The empty set ¤ is the set that contains no elements. For example, the intersec-
tion of the rational numbers and the irrational numbers is the empty set.
Some sets can be described by listing their elements in braces. For instance, the set A
consisting of the natural numbers (or positive integers) less than 6 can be expressed as
A = 51, 2, 3, 4, 56.
The entire set of integers is written as
50, ;1, ; 2, ;3, Á 6.
Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set
A = 5x ƒ x is an integer and 0 6 x 6 66
is the set of positive integers less than 6.

Intervals
A subset of the real line is called an interval if it contains at least two numbers and con-
tains all the real numbers lying between any two of its elements. For example, the set of all
real numbers x such that x 7 6 is an interval, as is the set of all x such that -2 … x … 5.
The set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to con-
tain every real number between -1 and 1 (for example).
Geometrically, intervals correspond to rays and line segments on the real line, along
with the real line itself. Intervals of numbers corresponding to line segments are finite in-
tervals; intervals corresponding to rays and the real line are infinite intervals.
A finite interval is said to be closed if it contains both of its endpoints, half-open if it
contains one endpoint but not the other, and open if it contains neither endpoint. The end-
points are also called boundary points; they make up the interval’s boundary. The re-
maining points of the interval are interior points and together comprise the interval’s in-
terior. Infinite intervals are closed if they contain a finite endpoint, and open otherwise.
The entire real line  is an infinite interval that is both open and closed.

Solving Inequalities
The process of finding the interval or intervals of numbers that satisfy an inequality in x is
called solving the inequality.
$14.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
studybank

Also available in package deal

Thumbnail
Package deal
calculus with ease 100% verified comprehensive note on calculus
-
5 2025
$ 31.55 More info

Get to know the seller

Seller avatar
studybank Kaplan College
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
8 months
Number of followers
0
Documents
28
Last sold
-
studybank book store

Over the years having access to quality study material as become a daunting task for student. study bank book store is a store that is loaded with quality study material for academic excellent such question and answer on various kind of subject, comprehensive note.

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions