100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Artificiële Intelligentie: maatschappelijke uitdagingen – Universiteit Antwerpen – Academiejaar 2025 – Volledige samenvatting van hoorcolleges en examengerichte theorie

Rating
4.0
(4)
Sold
21
Pages
60
Uploaded on
21-05-2025
Written in
2024/2025

Deze uitgebreide samenvatting behandelt alle hoorcolleges van het vak Artificiële Intelligentie: maatschappelijke uitdagingen aan de Universiteit Antwerpen. De inhoud bestrijkt onder andere de geschiedenis van AI, machine learning, deep learning, fairness, responsible AI, ethiek, privacy by design, AI in de wetgeving (AI Act), sustainability, generatieve modellen, en human-centered design. Elk hoofdstuk is voorzien van theorie, notities, figuren en voorbeelden en is afgestemd op de examenstof. De symbolen dienen als hulp om de leerstof visueel te onthouden. Zeer geschikt als voorbereiding op het volledige examen. VEEL SUCCES!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 21, 2025
File latest updated on
June 14, 2025
Number of pages
60
Written in
2024/2025
Type
Summary

Subjects

Content preview

Samenvatting Korfvak
Artificiële Intelligentie: maatschappelijke
uitdagingen
Universiteit Antwerpen




Dit document bevat theorie, notities, figuren, uitleg en voorbeelden. Achteraan is er een
oefentoets. Alles wat je nodig hebt om te slagen voor het examen.
De symbolen maken het makkelijker om de leerstof te onthouden.




1

,Inhoudsopgave

Les 1: inleiding ............................................................................................................................. 8
Geschiedenis .................................................................................................................................. 8
📜 Korte geschiedenis van AI ......................................................................................................... 8
🤖 Hoe werkt Machine Learning?................................................................................................... 9
💡 Extra uitleg: ............................................................................................................................. 9
🧠 Belangrijke mijlpalen in AI....................................................................................................... 10
🔧 Wat maakte deze sprongen mogelijk? ..................................................................................... 10
🧠 Recurrent Neural Networks (RNNs) ......................................................................................... 11
🧠 Deep Neural Networks (DNNs) ............................................................................................... 11
🧠 Very Deep Neural Networks .................................................................................................... 11
🔑 Belangrijk idee: Pre-training .................................................................................................... 11
🧪 Stap 1: Pre-training (auto-encoder) ......................................................................................... 11
🎯 Stap 2: Fine-tuning op echte taak ............................................................................................ 12
💡 Waarom dit nuttig is: .............................................................................................................. 12
🤖 Deep Neural Networks – kernpunten ....................................................................................... 13

Les 2: Understanding and Interpreting Deep Neural Networks ....................................................... 14
📌 1. Introductie en achtergrond ................................................................................................. 14
🧱 2. Architectuur van Deep Neural Networks (DNNs) .................................................................. 14
🖼 3. DNNs voor visuele data (zoals afbeeldingen) ....................................................................... 15
🔍 4. Feature-extractie in CNNs .................................................................................................. 15
⚙ 5. Generatieve modellen ........................................................................................................ 16
🔄 Autoencoder – Samenvatting .................................................................................................. 16
❗ 6. Belangrijke uitdagingen....................................................................................................... 17
🧠 7. Interpretability en Explainable AI (XAI) ................................................................................. 17
✅ 8. Samenvatting ..................................................................................................................... 18

Les 3: responsible AI .................................................................................................................... 18
🧠
📊 Wat is Responsible AI? ...............................................................................................................20
⚖ Basisbegrippen ..........................................................................................................................20
🔁 Waarom is Responsible AI belangrijk? .........................................................................................20
⚠ FAT-Flow: Ethische principes in het data science proces ..............................................................20
Belangrijkste risico’s ...................................................................................................................21
📌 Immediate Risks .................................................................................................................... 21
🏢 Systemic Risks....................................................................................................................... 21
🔎🌍 Existentiële Risico’s................................................................................................................ 21
👥Uitlegbaarheid (Explainable AI)....................................................................................................21
💡Vooroordelen en discriminatie ....................................................................................................21
🧭Oplossingen en strategieën .........................................................................................................21
De weg vooruit ...........................................................................................................................22
🧠
Les4: Importance of Safety in the design of AI systems .................................................................. 22
🔍Supervised Learning ...................................................................................................................22
🤖
Unsupervised Learning ...............................................................................................................22
Wat is Reinforcement Learning (RL)? ...........................................................................................23


2

, 🌍 RL in de praktijk ..........................................................................................................................23
⚠ Risico’s van RL in de echte wereld ...............................................................................................23
🧱 De basis van RL: Gridworld .........................................................................................................24
📐 Wiskundige onderbouw: Markov Decision Processes (MDP) .........................................................24
📊 Value Iteration & Q-learning ........................................................................................................25
🔐 Waarom veiligheid cruciaal is in RL ..............................................................................................25
🧠 Leren van mensen ......................................................................................................................25
🛡 Strategieën voor veilige AI ...........................................................................................................25
🚗 Voorbeelden van veilige RL-toepassingen ....................................................................................26
🧭 Conclusie: de weg vooruit ...........................................................................................................26

Les 5: Fairness and genAI ............................................................................................................. 26
🤖 Wat is Responsible AI? ...............................................................................................................26
⚖ Wat betekent Fairness in AI? .......................................................................................................26
📉
Bronnen van Bias in Data ............................................................................................................27
📊
Hoe meet je Bias in Data? ...........................................................................................................27
🧪
Voorbeeldanalyse: hoe eerlijk zijn modellen? ...............................................................................27
📏
Fairness-metric 1: Demographic Parity ........................................................................................27

Fairness-metric 2: Equalized Opportunity & Equalized Odds .........................................................28
🧠
Ethische keuzes & juridische uitdagingen.....................................................................................28
📍
Voorbeeld: COMPAS – bias in strafrecht .......................................................................................28
👁
Oplossing: Human in the Loop & Transparantie ............................................................................28
🧬
⚠ Wat is Generative AI? ..................................................................................................................28
📈 Risico’s van Generative AI ...........................................................................................................29
ChatGPT verhoogt productiviteit (maar niet zonder risico) .............................................................29

Les🌱
6: AI for sustainability. ........................................................................................................... 29

🧩 Wat is Sustainable AI? ................................................................................................................29
🌍Vier kernprincipes van Sustainable AI ..........................................................................................30
🛰Wat is AI for Sustainability? .........................................................................................................30
🔬Hoe verzamelen we data? ...........................................................................................................30
Voorbeelden van AI-onderzoek voor duurzaamheid ......................................................................31
🪨 Bio-accelerated Mineral Weathering (BAM!) ............................................................................ 31
❄ Future Arctic – Klimaatonderzoek ........................................................................................... 31
🌍 Global Fertilizer Dataset ......................................................................................................... 31
🌳 CurieuzeNeuzen in de Tuin ..................................................................................................... 31
🧠🌲 ICOS Brasschaat – Bosmonitoring .......................................................................................... 31
⚠Brede toepassingen van AI voor duurzaamheid ............................................................................32

Negatieve milieu-impact van AI ...................................................................................................32




3

, 📜 Beleidskader: EU AI Act (2024) ....................................................................................................32
💡 Oplossingen voor duurzamere AI .................................................................................................32
🧭 Samenvatting voor het examen (volgens jouw notities) .................................................................33
Les 7: Designing Futures: human-centered design in technologies ................................................ 33

🎯 Thema: AI Design Futures ...........................................................................................................33
🤖 Humane AI-producten — Hype vs. realiteit...................................................................................33
🧠 AI & Ontwerpen vandaag ............................................................................................................34
🧱 Wat maakt een AI-product écht innovatief?..................................................................................34
🔮 Futures Thinking – Ontwerpen voor de toekomst ..........................................................................34
Wat is futures thinking? .............................................................................................................. 34
🌍 Worldbuilding – Werelden creëren ...............................................................................................34
📦 Design Fiction – Fictieve prototypes.............................................................................................34
🧨 Critical Design – Technologie bevragen ........................................................................................35
🧪 Voorbeeldinstituut: MIT Media Lab ..............................................................................................35
🧬
Convergentie van disciplines ......................................................................................................35
🦾
Automatisering vs. Augmentatie ..................................................................................................35
💡
Vier vormen van Human Augmentation ........................................................................................35
🔚
Conclusie: wat leer je hieruit? .....................................................................................................36

Les 8: DE MORELE GEVAREN EN KANSEN VAN GENERATIEVE, MULTIMODALE LLMS EN ANDERE AI .. 36

Thema: Ethiek, Epistemologie & Metafysica in AI ..........................................................................36
🧩
1. Ethische vragen – “Ought implies can” .....................................................................................36
📚
🧠 2. Epistemologische vragen – Wat is kennis? ................................................................................36
🧠 3. Metafysische vragen – Wat is echt? Wat betekent ‘bestaan’? .....................................................37
🌐 AI zet taal om in geometrie ..........................................................................................................37
🧬 AI als multimodaal vertaalstation ................................................................................................37
🐝 Collectieve intelligentie: zijn wij deel van iets groters? ..................................................................38
🧠CASE STUDY 1: Dierlijke intelligentie en communicatie .................................................................38
🧠CASE STUDY 2: Bewustzijn, morfogenese & AI..............................................................................38
🧭Metafysische implicaties van AI...................................................................................................38
📌Samenvattend – Drie domeinen in interactie ................................................................................39
Mogelijke examenvragen (uit de slides) ........................................................................................39

Les⚖
9: AI en recht ......................................................................................................................... 39
🏛Recht vs. Ethiek ..........................................................................................................................39
👩⚖Domeinen van het recht (relevant bij AI) .......................................................................................39
🚫
Handhaving van het recht ...........................................................................................................40
Antidiscriminatierecht en AI ........................................................................................................40



4
$9.66
Get access to the full document:
Purchased by 21 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
6 months ago

6 months ago

6 months ago

Great summary that supports the slides, thank you!!

6 months ago

4.0

4 reviews

5
2
4
0
3
2
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
studentHingenieur Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
42
Member since
3 year
Number of followers
5
Documents
11
Last sold
1 day ago

4.3

6 reviews

5
4
4
0
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions