A Problem-Solving Approach to Mathematics for Elementary School
&uh &uh &uh &uh &uh &uh &uh
Teachers
&uh
by Rick Billstein, Shlomo Libeskind, Johnny Lott 13TH EDITION.
&uh &uh &uh &uh &uh &uh &uh &uh
FULL TEST BANK!!! &uh &uh
,Exam
Name
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine whether the following is a statement. If it is, then also classify the statement as true or false.
1) Why don't you come here? 1)
A) True statement B) Not a statement C) False statement
Answer: B
2) This room is big. 2)
A) False statement B) True statement C) Not a statement
Answer: C
3) 5 - 1 = 4 3)
A) True statement B) Not a statement C) False statement
Answer: A
4) 7x + y = 3 4)
A) False statement B) Not a statement C) True statement
Answer: B
5) Can you bring the book? 5)
A) False statement B) True statement C) Not a statement
Answer: C
6) x + y = x - y, where y = 0 6)
A) Not a statement B) True statement C) False statement
Answer: B
7) 12 = 3y 7)
A) False statement B) True statement C) Not a statement
Answer: C
8) 2.4 = 5.2 8)
A) Not a statement B) False statement C) True statement
Answer: B
9) The state of California is in North America. 9)
A) Not a statement B) True statement C) False statement
Answer: B
10) Brazil is in Asia. 10)
A) True statement B) Not a statement C) False statement
Answer: C
1
,Use &uha &uh quantifier &uhto &uh make &uh the &uh following &uh true &uh or &uh false, &uhas &uhindicated, &uhwhere &uhx &uh is &uha &uhnatural
&uh number.
11) x &uh+ & u h x &uh= &uh 6 & u h (make &uh true) 11) & u h
A) There &uhis &uhno &uhnatural &uh number &uhx &uhsuch &uh that &uhx &uh+ & u h x &uh= &uh 6.
B) There &uhexists &uha &uhnatural &uh number &uhx &uhsuch &uhthat &uhx &uh+ & u h x &uh= &uh6.
C) For &uhevery &uhnatural &uhnumber &uhx, &uhx &uh+ & u h x &uh= &uh6.
D) For &uhall &uhnatural &uhnumbers &uhx,
&uh x &uh+ &uhx &uh= &uh6. &uhAnswer: & uh B
12) x3 &uh= & u h 8 & u h (make &uh true) 12) & u h
A) No &uhnatural &uhnumber &uhx &uh exists &uhsuch &uh that &uhx3 &uh = &uh 8.
B) Every &uhnatural &uh number &uh x &uh satisfies &uh x3 &uh= & u h 8.
C) Three &uhnatural &uh numbers &uhx &uhexist &uhsuch &uhthat &uhx3 &uh= &uh 8.
D) There &uhexists &uha &uhnatural &uhnumber &uhx &uhsuch
&uh that &uhx3 &uh= &uh8. &uhAnswer: &uhD
13) 2x &uh+ & u h 1 &uh= &u h 5 &uh- & u h x & u h (make &uhtrue) 13) & u h
A) Only &uhtwo &uhnatural & uh numbers &uh x &uhexist &uhsuch &uh that &uh2x &uh + & u h 1 &uh= & u h 5 &uh- & u h x.
B) No &uhnatural & u h number &uh x &uhexists &uhsuch &uhthat & u h 2x &uh + & u h 1 &uh= &uh 5 &uh- & u h x.
C) For &uhevery &uhnatural & u h number &uhx, &uh2x &uh+ & u h 1 &uh= &u h 5 &uh- & u h x.
D) There &uhexists &uha &uhnatural &uhnumber &uhx &uhsuch &uhthat
&uh 2x &uh+ &uh1 &uh= &uh5 &uh- &uhx. &uhAnswer: &uh D
14) 12x &uh = &uh 5x &uh + & u h 7x & u h (make & uh false) 14) & u h
A) More &uhthan &uhone &uhnatural &uhnumber &uh x &uh exists &uhsuch &uhthat & uh 12x &uh= &uh5x & uh + & u h 7x.
B) For &uhevery &uhnatural &uhnumber &uhx, &uh12x &uh= &uh5x &uh+ & u h 7x.
C) There &uhexists &uha &uh natural &uhnumber &uh x &uhsuch &uh that &uh 12x &uh= &uh5x &uh+ & u h 7x.
D) There &uhis &uhno &uhnatural &uhnumber &uhx &uhsuch &uhthat
&uh 12x &uh= &uh5x &uh+ &uh7x. &uhAnswer: & uh D
15) x &uh- & u h 13 &uh= &uh13 &uh- & u h x & u h (make &uhfalse) 15) & u h
A) There &uh exists &uh a &uh natural & u h number & uh x &uhsuch & uh that & uh x &uh- & u h 13 &uh= &uh 13 &uh- & u h x.
B) At &uhleast &uhone & uh natural & uh number &uh x &uh exists & uh such &uh that &uhx &uh - & u h 13 &uh= & u h 13 &uh- & u h x.
C) There &uhis &uhno &uhnatural & u h number & u h x &uhsuch & uh that &uhx &uh- & u h 13 &uh= & u h 13 &uh- & u h x.
D) For &uhx &uh = & u h 13, &uhx &uh- & u h 13 &uh= & u h 13 &uh- & u h x.
Answer: &uhC
16) 4x &uh= & u h 7x & u h (make &uhfalse) 16) & u h
A) No &uh natural &uh number &uh x &uh satisfies &uh4x &uh= & u h 7x.
B) There &uhis &uhno &uhnatural &uh number &uh x &uhsuch &uh that &uh4x &uh= &uh 7x.
C) For &uhevery &uhnatural &uhnumber &uhx,
&uh 4x &uh= &uh7x. &uhAnswer: & uh C
Write &uhthe &uhstatement &uhindicated.
17) Write &uhthe &uhnegation &uhof &uhthe 17) & u h
&uhfollowing: &uhThe &uhtest &uhis
&uhdifficult.
A) The &uhtest &uhis &uhnot &uheasy. B) & uh The &uhtest &uhis &uhvery &uhdifficult.
C) &uhThe &uhtest &uhis &uhnot &uhdifficult. D) &uhThe &uhtest &uhis &uhnot
&uhvery &uheasy. &uhAnswer: & uh C
2
, 18) Write &uhthe &uhnegation &uhof &uhthe 18) & u h
&uhfollowing: &uh8 &uh+ &uh2 &uh= &uh10
A) 8 &uh+ & u h 2 &uh= & u h 12 B) & u h The &uhsum &uhof &uh8 &uhand &uh2 &uhis &uhten.
C) &uh 8 &uh+ &uh 2 &uh× &uh10 D) & uh 8 &uh+ & u h 2 &uh= &uh 2 &uh+ & u h 8
Answer: &uhC
SHORT &uhANSWER. &uhWrite &uhthe &uhword &uhor &uhphrase &uhthat &uhbest &uhcompletes &uheach &uhstatement
&uh or &uhanswers &uhthe &uhquestion. &uhProvide &uhan &uhappropriate &uhresponse.
19) Negate &uhthe &uhfollowing: &uhThe &uhstore &uhis &uhsometimes &uhopen &uhon &uhSunday. 19)
&uhAnswer: & uh The &uhstore &uhis &uhnever &uhopen &uhon &uhSunday.
MULTIPLE &uhCHOICE. & u h Choose &uh the &uh one &uhalternative &uh that &uhbest &uhcompletes &uhthe &uh statement &uh or
&uhanswers &uhthe &uh question.
Construct &uha &uhtruth &uhtable &uhfor &uhthe &uhstatement.
20) ~p &uhA~s 20) & u h
A) p &uhs & u h (~p &uhA~s) B) & u h p &uhs &uh (~p &uhA~s)
T T F T T F
T F F T F T
F T F F T T
F F F F F T
C) &uhp s (~p &uhA~s) D) s (~p
& uh & u T &uh p & u &uhA~s)
T h & uh h F
T T T
T F F T F F
F T F F T F
F F T F F T
Answer: &uhD &uh
21) & u h s &uhV~(r 21)
&uh Ap) p s &uhV~(r B) & u h s r p s &uhV~(r & uh Ap)
A) & u h s r & u h Ap)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F T T F F T
F T T F F T T F
Answer: F &uhTA F T F T F T
F F T T F F T T
F F& u h At
22) (p &uh A~q) F T F F F F 22) & u h
A) p q t (p &uh A~q) & u h At B) & u h p q t (p &uh A~q) & u h At
T T T F T T T F
T T F F T T F F
T F T T T F T F
T F F F T F F F
F T T F F T T F
F T F F F T F T
F F T F F F T T
F F F F F F F T
Answer: &uhA
3