A Problem-Solving Approach to Mathematics for Elementary School
$so $so $so $so $so $so $so
Teachers
$so
by Rick Billstein, Shlomo Libeskind, Johnny Lott 12 EDITION.
$so $so $so $so $so $so $so $so
FULL TEST BANK!!! $so $so
,Exam
Name
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine whether the following is a statement. If it is, then also classify the statement as true or false.
1) Why don't you come here? 1)
A) True statement B) Not a statement C) False statement
Answer: B
2) This room is big. 2)
A) False statement B) True statement C) Not a statement
Answer: C
3) 5 - 1 = 4 3)
A) True statement B) Not a statement C) False statement
Answer: A
4) 7x + y = 3 4)
A) False statement B) Not a statement C) True statement
Answer: B
5) Can you bring the book? 5)
A) False statement B) True statement C) Not a statement
Answer: C
6) x + y = x - y, where y = 0 6)
A) Not a statement B) True statement C) False statement
Answer: B
7) 12 = 3y 7)
A) False statement B) True statement C) Not a statement
Answer: C
8) 2.4 = 5.2 8)
A) Not a statement B) False statement C) True statement
Answer: B
9) The state of California is in North America. 9)
A) Not a statement B) True statement C) False statement
Answer: B
10) Brazil is in Asia. 10)
A) True statement B) Not a statement C) False statement
Answer: C
1
,Use $soa $soquantifier $soto $so make $sothe $sofollowing $so true $soor $sofalse, $soas $soindicated, $sowhere $sox $sois $soa $sonatural $so number.
11) x $so+ $ s o x $so= $so 6 $ s o (make $so true) 11) $ s o
A) There $sois $sono $sonatural $so number $sox $sosuch $so that $sox $so+ $ s o x $so= $so6.
B) There $soexists $soa $sonatural $so number $sox $sosuch $so that $sox $so+ $ s o x $so= $so6.
C) For $soevery $sonatural $sonumber $sox, $sox $so+ $ s o x $so= $so 6.
D) For $soall $sonatural $sonumbers $sox, $sox
$so + $sox $so= $so6. $soAnswer: $s o B
12) x3 $so= $ s o 8 $ s o (make $so true) 12) $ s o
A) No $sonatural $sonumber $sox $soexists $sosuch $so that $sox3 $so = $so8.
B) Every $sonatural $so number $so x $so satisfies $so x3 $so= $ s o 8.
C) Three $sonatural $so numbers $sox $soexist $sosuch $sothat $sox3 $so= $so 8.
D) There $soexists $soa $sonatural $sonumber $sox $sosuch
$so that $sox3 $so= $so8. $soAnswer: $soD
13) 2x $so+ $ s o 1 $so= $ s o 5 $so- $ s o x $ s o (make $sotrue) 13) $ s o
A) Only $sotwo $sonatural $so numbers $so x $soexist $so such $so that $so2x $so + $ s o 1 $so= $ s o 5 $so- $ s o x.
B) No $sonatural $so number $sox $soexists $sosuch $sothat $s o 2x $so + $ s o 1 $so= $so 5 $so- $ s o x.
C) For $soevery $sonatural $ s o number $sox, $so2x $so+ $ s o 1 $so= $ so 5 $so- $ s o x.
D) There $soexists $soa $sonatural $sonumber $sox $sosuch $sothat $so2x
$so + $so1 $so= $so5 $so- $sox. $soAnswer: $ so D
14) 12x $so = $so 5x $so+ $ s o 7x $ s o (make $so false) 14) $ s o
A) More $sothan $soone $sonatural $sonumber $so x $so exists $sosuch $sothat $so 12x $so = $so5x $so + $ s o 7x.
B) For $soevery $sonatural $so number $sox, $so12x $so= $so5x $so+ $ s o 7x.
C) There $soexists $soa $so natural $sonumber $so x $sosuch $so that $so12x $so= $so 5x $so + $ s o 7x.
D) There $sois $sono $sonatural $sonumber $sox $sosuch $sothat
$so 12x $so= $so5x $so+ $so7x. $soAnswer: $so D
15) x $so- $ s o 13 $so= $so13 $so- $ s o x $ s o (make $sofalse) 15) $ s o
A) There $so exists $so a $so natural $ so number $so x $sosuch $so that $so x $so- $ s o 13 $so= $so 13 $so- $ s o x.
B) At $soleast $soone $so natural $so number $so x $so exists $so such $so that $sox $so - $ s o 13 $so= $ s o 13 $so- $ s o x.
C) There $sois $sono $sonatural $ s o number $ s o x $sosuch $so that $sox $so- $ s o 13 $so= $ s o 13 $so- $ s o x.
D) For $sox $so = $ s o 13, $sox $so- $ s o 13 $so= $ s o 13 $so- $ s o x.
Answer: $soC
16) 4x $so= $ s o 7x $ s o (make $sofalse) 16) $ s o
A) No $so natural $so number $so x $sosatisfies $so4x $so= $ s o 7x.
B) There $sois $sono $sonatural $so number $sox $sosuch $so that $so4x $so= $so 7x.
C) For $soevery $sonatural $sonumber $sox,
$so 4x $so= $so7x. $soAnswer: $ so C
Write $sothe $sostatement $soindicated.
17) Write $sothe $sonegation $soof $sothe 17) $ s o
$sofollowing: $soThe $sotest $sois
$sodifficult.
A) The $sotest $sois $sonot $soeasy. B) $so The $sotest $sois $sovery $sodifficult.
C) $soThe $sotest $sois $sonot $sodifficult. D) $soThe $sotest $sois $sonot
very $soeasy. $soAnswer:
$so $s o C
2
, 18) Write $sothe $sonegation $soof $sothe 18) $ s o
$sofollowing: $so8 $so+ $so2 $so= $so10
A) 8 $so+ $ s o 2 $so= $ s o 12 B) $ s o The $sosum $soof $so8 $soand $so2 $sois $soten.
C) $so 8 $so+ $so 2 $so× $so10 D) $so 8 $so+ $ s o 2 $so= $so 2 $so+ $ s o 8
Answer: $soC
SHORT $soANSWER. $soWrite $sothe $soword $soor $sophrase $sothat $sobest $socompletes $soeach $sostatement $soor
answers $sothe $soquestion. $soProvide $soan $soappropriate $soresponse.
$so
19) Negate $sothe $sofollowing: $soThe $sostore $sois $sosometimes $soopen $soon $soSunday. 19)
Answer:
$so $s o The $sostore $sois $sonever $soopen $soon $soSunday.
MULTIPLE $soCHOICE. $ s o Choose $sothe $so one $soalternative $sothat $sobest $socompletes $sothe $sostatement $so or
$soanswers $sothe $so question.
Construct $soa $sotruth $sotable $sofor $sothe $sostatement.
20) ~p $soA~s 20) $ s o
A) p $sos $ s o (~p $soA~s) B) $ s o p $sos $so (~p $soA~s)
T T F TT F
T F F TF T
F T F FT T
F F F FF T
C) $so p s (~p $soA~s) D) $sop s (~p $soA~s)
$ so $ s T $ so $ so F
T o T T
T
T F F T F F
F T F F T F
F F T F F T
Answer: $soD $so
21) $ s o s $soV~(r 21)
$so Ap) p s $soV~(r B) $ s o s r p s $soV~(r $so Ap)
A) $ s o s r $ s o Ap)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F T T F F T
F T T F F T T F
Answer: F $soA
T F T F T F T
F F T T F F T T
F $Fs o AtF
22) (p $so A~q) T F F F F 22) $ s o
A) p q t (p $so A~q) $ s o At B) $ s o p q t (p $so A~q) $ s o At
T T T F T T T F
T T F F T T F F
T F T T T F T F
T F F F T F F F
F T T F F T T F
F T F F F T F T
F F T F F F T T
F F F F F F F T
Answer: $soA
3