INSTRUCTOR’S
SOLUTIONS MANUAL
PR
ES
DISCRETE MATHEMATICS
FIFTH EDITION
SI
John A. Dossey
Illinois State University
VE
Albert D. Otto
Illinois State University
Lawrence E. Spence
G
Illinois State University
R
Charles Vanden Eynden
Illinois State University
AD
ES
,M
PR
ES
SI
VE
Provided by Pearson Addison-Wesley from electronic files supplied by the author.
G
Copyright © 2006 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
R
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, with-
out the prior written permission of the publisher. Printed in the United States of America.
ISBN 0-321-30516-7
AD
1 2 3 4 5 6 XXX 08 07 06 05
ES
,M
PR
Contents
ES
1 An Introduction to Combinatorial Problems and Techniques 1
1.1 The Time to Complete a Project . . . . . . . . . . . . . . . . . . . . . . . . . 1
SI
1.2 A Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Algorithms and Their Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 4
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
VE
2 Sets, Relations, and Functions 6
2.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Partial Ordering Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
G
2.5 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
R
3 Coding Theory 14
AD
3.1 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 The RSA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Error-Detecting and Error-Correcting Codes . . . . . . . . . . . . . . . . . . 17
3.5 Matrix Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Matrix Codes That Correct All Single-Digit Errors . . . . . . . . . . . . . . . 19
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ES
iii
,M
Table of Contents
4 Graphs 22
PR
4.1 Graphs and Their Representations . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Paths and Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Shortest Paths and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Coloring a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Directed Graphs and Multigraphs . . . . . . . . . . . . . . . . . . . . . . . . 30
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ES
5 Trees 36
5.1 Properties of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Binary Trees and Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SI
5.6 Optimal Binary Trees and Binary Search Trees . . . . . . . . . . . . . . . . . 51
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Matching 63
VE
6.1 Systems of Distinct Representatives . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Matchings in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 A Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Applications of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 The Hungarian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
G
7 Network Flows 68
R
7.1 Flows and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 A Flow Augmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 The Max-Flow Min-Cut Theorem . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Flows and Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
AD
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ES
iv