First Course inAbstractAlgebra A
v v v v v v v
v 8th EditionbyJohnB.Fraleigh
v v v v v v v v All
v ChaptersFullCompletev v
, CONTENTS
1. Sets and Relations
v v 1
I. Groups and Subgroups v v
2. Introduction and Examples 4 v v
3. Binary Operations 7 v
4. Isomorphic Binary Structures 9 v v
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
v v
8. Generators and Cayley Digraphs 24 v v v
II. Permutations, Cosets, and Direct Products v v v v
9. Groups of Permutations 26 v v
10. Orbits, Cycles, and the Alternating Groups v v v v v
30
11. Cosets and the Theorem of Lagrange
v 34 v v v v
12. Direct Products and Finitely Generated Abelian Groups
v 37 v v v v v
13. Plane Isometries 42
v
III. Homomorphisms and Factor Groups v v v
14. Homomorphisms 44
15. Factor Groups 49 v
16. Factor-Group Computations and Simple Groups v v v v 53
17. Group Action on a Set 58
v v v v
18. Applications of G-Sets to Counting 61 v v v v
IV. Rings and Fields v v
19. Rings and Fields
v 63 v
20. Integral Domains 68 v
21. Fermat’s and Euler’s Theorems 72 v v v
22. The Field of Quotients of an Integral Domain
v 74 v v v v v v
23. Rings of Polynomials
v 76 v
24. FactorizationofPolynomialsovera Field 79 v v v v v
25. Noncommutative Examples 85 v
26. Ordered Rings and Fields 87 v v v
V. Ideals and Factor Rings v v v
27. Homomorphisms and Factor Rings v v v 89
28. Prime and Maximal Ideals
v 94 v v
,29. Gröbner Bases for Ideals
v v v 99
, VI. Extension Fields v
30. Introduction to Extension Fields v v v 103
31. Vector Spaces 107 v
32. Algebraic Extensions 111 v
33. Geometric Constructions 115 v
34. Finite Fields 116 v
VII. Advanced Group Theory v v
35. IsomorphismTheorems 117 v
36. Series of Groups 119
v v
37. Sylow Theorems 122 v
38. Applications of the Sylow Theory v v v v 124
39. Free Abelian Groups 128
v v
40. Free Groups 130
v
41. Group Presentations 133 v
VIII. Groups in Topology v v
42. Simplicial Complexes and Homology Groups 136 v v v v
43. Computations of Homology Groups 138 v v v
44. More Homology Computations and Applications
v 140 v v v
45. Homological Algebra 144 v
IX. Factorization
46. Unique Factorization Domains 148
v v
47. Euclidean Domains 151 v
48. Gaussian Integers and Multiplicative Norms v v v v 154
X. Automorphisms and Galois Theory v v v
49. Automorphisms of Fields 159 v v
50. The Isomorphism Extension Theorem
v v v 164
51. Splitting Fields 165 v
52. SeparableExtensions 167 v
53. TotallyInseparable Extensions
v 171 v
54. Galois Theory 173 v
55. IllustrationsofGaloisTheory 176 v v v
56. CyclotomicExtensions 183 v
57. Insolvability of the Quintic 185 v v v
APPENDIX Matrix Algebra v v v v 187
iv