100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary High-Scoring Physics Notes: Capacitor Revision (10 Pages)

Rating
-
Sold
-
Pages
10
Uploaded on
05-05-2025
Written in
2024/2025

This concise and high-quality 10-page Physics note provides a complete revision on Capacitors—perfect for students preparing for high school or college-level physics exams. It includes: Key concepts explained clearly Important formulas and definitions Diagrams and examples for better understanding Suitable for quick last-minute revision Covers theory and problem-solving essentials Whether you're a student aiming for top grades or someone looking for a clear understanding of capacitors, this document is tailored to support your success.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
May 5, 2025
Number of pages
10
Written in
2024/2025
Type
Summary

Subjects

Content preview

UNIT G485 Module 2 5.2.1 Capacitors 1

 Candidates should be able to : INTRODUCTION


 Define capacitance and the farad.
 Electric current is a flow of charge, usually carried by electrons. In a
 Select and use the equation :
Q = CV circuit the electrons drift along the conductors which make up the circuit.
If there is a gap in the circuit, we say that there is no current, but this is
 State and use the equation for the total capacitance of two not completely true.
or more capacitors in series.
 State and use the equation for the total capacitance of two In the circuit shown opposite, when
S is closed electrons are caused to
V
or more capacitors in parallel. + -
flow briefly in a clockwise direction. S
 Solve circuit problems with capacitors involving series and Negative charge accumulates on one
parallel circuits. side of the gap which repels electrons
 Explain that the area under a potential difference against on the other side. So negative charge
builds up on one side and positive
charge graph is equal to the energy stored by a capacitor.
charge on the other. The flow quickly - -
 Select and use the equations for a charged capacitor : ++
stops when the p.d. across the gap ++ - -
(due to the separated charges)
gap
W = ½QV W = ½CV2 becomes equal to the supply voltage,V.

We can think of the wires on either side of the gap as ‘storing’ a tiny amount
 Sketch graphs that show the variation with time of potential of charge. This charge storage is the basis of a device called a CAPACITOR.
difference, charge and current for a capacitor discharging
through a resistor.
A CAPACITOR is an arrangement of conductors and
 Define the time constant of a circuit.
insulators designed to store electrical charge.
 Select and use :
Time constant = CR

 Analyse the discharge of a capacitor using equations of the
Although capacitors come in
form :
a huge variety of different
x = x0e-t/CR types, shapes and sizes, they
all basically consist of two
metal plates separated by
an insulating material which
 Explain exponential decays as having a constant-ratio
is called the dielectric.
property.
 Describe the uses of capacitors for the storage of energy in
applications such as flash photography, lasers used in nuclear
fusion and as back-up power supplies for computers.

, UNIT G485 Module 2 5.2.1 Capacitors 2


 Once a capacitor has been charged, charged capacitor
it can be discharged by disconnecting
 If capacitors were made in their
it from the supply and connecting the
basic form of two flat conducting
leads together.
plates separated by an insulator,
they would be excessively large
and cumbersome. We can observe a discharge by
R
connecting a charged capacitor
In order to make capacitors of a to an LED through a protective
size suitable for connection in a resistor.
circuit, the metal plates and the
dielectric are rolled into a The LED glows as the capacitor
cylindrical shape as shown in the discharges. The LED glows as
capacitor discharges
diagram opposite.



CAPACITANCE


CHARGING OF A PARALLEL-PLATE CAPACITOR  The term CAPACITANCE is used in order to quantify the amount of charge
which can be stored by a given capacitor.

 Two parallel, metal plates placed close to +Q -Q
each other form a capacitor. When such a The CAPACITANCE (C) of a capacitor is the amount of
capacitor is connected to a battery, one of charge stored per unit potential difference across it.
the plates gains electrons and so
becomes negatively charged.
CAPACITANCE = CHARGE
This causes an equal number of electrons POTENTIAL DIFFERENCE
to be repelled from the other plate, which
then becomes positively charged. The
(C)
arrival of electrons at one plate and the
repulsion of electrons from the other C = Q
occurs simultaneously.
V
(F) (V)
If one plate stores charge –Q, the other stores charge +Q and we say that charge Q
is stored.

The amount of charge stored depends on the POTENTIAL DIFFERENCE (VOLTAGE)
of the supply to which the plates are connected.
$5.48
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
odhicar

Get to know the seller

Seller avatar
odhicar Stuvia
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
7 months
Number of followers
0
Documents
15
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions