100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Linear Algebra, 1st Edition by Meckes, 9781107177901, Covering Chapters 1-6 Includes Rationales

Rating
-
Sold
-
Pages
243
Grade
A+
Uploaded on
05-05-2025
Written in
2024/2025

Solution Manual for Linear Algebra, 1st Edition by Meckes, 9781107177901, Covering Chapters 1-6 Includes Rationales

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Course

Document information

Uploaded on
May 5, 2025
Number of pages
243
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Exercise and Solution Manual f
g g g g




or
A First Course in Linear Algebra
g g g g g




Robert A. Beezer
g g




University of Puget Sound
g g g g




Version 3.00 g




Congruent Press g

,RobertgA.gBeezergisgagProfessorgofgMathematicsgatgthegUniversitygofgPugetgSound,gwheregheghasgbeengongthegf
acultygsinceg1984.g HegreceivedgagB.S.gingMathematicsg(withgangEmphasisgingComputergScience)gfromgthegUnive
rsityg ofg Santag Clarag ing 1978,g ag M.S.g ing Statisticsg fromg theg Universityg ofg Illinoisg atg Urbana-
Champaignging 1982g andg ag Ph.D.g ing Mathematicsg fromg theg Universityg ofg Illinoisg atg Urbana-
Champaigng ing 1984.
Ing additiong tog hisg teachingg atg theg Universityg ofg Pugetg Sound,g heg hasg madeg sabbaticalg visitsg tog theg University
gofgthegWestgIndiesg(Trinidadgcampus)g andgthegUniversityg ofgWesterngAustralia.g Heghasgalsoggivengseveralgcour

sesgingthegMaster’sgprogramgatgthegAfricangInstitutegforgMathematicalgSciences,gSouthgAfrica.g Heghasg beengagS
agegdevelopergsinceg2008.
Hegteachesgcalculus,glineargalgebragandgabstractgalgebragregularly,gwhileghisgresearchginterestsgincludegthegapp
licationsg ofg linearg algebrag tog graphg theory.g Hisg professionalg websiteg isg atg http://buzzard.ups.edu.




Edition
Versiong 3.00
Decemberg 7,g 2012


Coverg Design
Aidang Meacham


Publisherg Rober
tgA.gBeezergCong
ruentgPress
GiggHarbor,gWashington,gUSA


⃝cg 2004—2012g g Robertg A.g Beezer

Permissiongisggrantedgtogcopy,gdistributegand/orgmodifygthisgdocumentgundergthegtermsgofgthegGNUgFreegDoc
umentationg License,g Versiong 1.2g org anyg laterg versiong publishedg byg theg Freeg Softwareg Foundation;g withgnog
Invariantg Sections,g nog Front-Coverg Texts,g andg nog Back-
Coverg Texts.g Ag copyg ofg theg licenseg isg includedg ingthegappendixgentitledg“GNUgFreegDocumentationgLicense”.
Theg mostg recentg versiong cang alwaysg beg foundg atg http://linear.pugetsound.edu.

,Contents

Systemsg ofg Linearg Equations 1
Whatg isg Linearg Algebra?........................................................................................................................................ 1
Solvingg Systemsg ofg Linearg Equations ................................................................................................................... 1
Reducedg Row-Echelong Form ................................................................................................................................. 6
Typesg ofg Solutiong Sets ......................................................................................................................................... 13
Homogeneousg Systemsg ofg Equations ................................................................................................................... 18
Nonsingularg Matrices ........................................................................................................................................... 23

Vectors 28
Vectorg Operations ................................................................................................................................................. 28
Linearg Combinations ............................................................................................................................................. 32
Spanningg Sets ....................................................................................................................................................... 33
Linearg Independence ............................................................................................................................................ 41
Linearg Dependenceg andg Spans............................................................................................................................ 48
Orthogonality ......................................................................................................................................................... 51

Matrices 53
Matrixg Operations ................................................................................................................................................ 53
Matrixg Multiplication ............................................................................................................................................ 57
Matrixg Inversesg andg Systemsg ofg Linearg Equations ........................................................................................... 61
Matrixg Inversesg andg Nonsingularg Matrices ....................................................................................................... 65
Columng andg Rowg Spaces..................................................................................................................................... 67
Fourg Subsets.......................................................................................................................................................... 72

Vectorg Spaces 77
Vectorg Spaces........................................................................................................................................................ 77
Subspaces............................................................................................................................................................... 80
Linearg Independenceg andg Spanningg Sets........................................................................................................... 84
Bases ...................................................................................................................................................................... 91
Dimension .............................................................................................................................................................. 95
Propertiesg ofg Dimension ...................................................................................................................................... 99

Determinants 101
Determinantg ofg ag Matrix .................................................................................................................................... 101
Propertiesg ofg Determinantsg ofg Matrices .......................................................................................................... 104

Eigenvalues 106
Eigenvaluesg andg Eigenvectors ............................................................................................................................ 106
Propertiesg ofg Eigenvaluesg andg Eigenvectors .................................................................................................... 111
Similarityg andg Diagonalization ........................................................................................................................... 113

Linearg Transformations 117
Linearg Transformations....................................................................................................................................... 117
Injectiveg Linearg Transformations....................................................................................................................... 121
Surjectiveg Linearg Transformations .................................................................................................................... 126
Invertibleg Linearg Transformations ..................................................................................................................... 131

iii

, Representations 136
Vectorg Representations...................................................................................................................................... 136
Matrixg Representations ..................................................................................................................................... 137
Changeg ofg Basis .................................................................................................................................................. 146
Orthonormalg Diagonalization ............................................................................................................................ 149

Archetypes 150




iv
$20.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ALPHANURSE Teachme2-tutor
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
8 months
Number of followers
1
Documents
496
Last sold
3 months ago

4.9

360 reviews

5
317
4
37
3
5
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions