100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for A Concise Introduction to Pure Mathematics, 24th Edition by Martin Liebeck, 9781498722926, Covering Chapters 1-26 Includes Rationales

Rating
-
Sold
-
Pages
134
Grade
A+
Uploaded on
05-05-2025
Written in
2024/2025

Solution Manual for A Concise Introduction to Pure Mathematics, 24th Edition by Martin Liebeck, 9781498722926, Covering Chapters 1-26 Includes Rationales

Institution
A Concise Introduction
Course
A Concise Introduction











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
A Concise Introduction
Course
A Concise Introduction

Document information

Uploaded on
May 5, 2025
Number of pages
134
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

15/06/2023o01:49 Solutionomanualoforointroductionotooprobabilit
y




Introduction to Probability 2n
o o o



d Editiono


Problem Solutions o

(lastoupdated:o 9/26/17)




co DimitrioP.oBertsekasoandoJohnoN.oTsitsiklis
Massachusettso Instituteo ofo Technology




WWW ositeoforobookoinformationoandoorder

so http://www.athenasc.com




Athenao Scientific,o Belmont,o Massachusetts
1




about:blank 1/134

,15/06/2023o01:49 Solutionomanualoforointroductionotooprobabilit
y




CoHoAoPoToEoRo 1




Solutiono too Problemo 1.1.o Weo have

Ao=o{2,o4,o6}, Bo=o{4,o5,o6},

sooAo∪oBo=o{2,o4,o5,o6},
(Ao∪oB)co =o{1,o3}.

oando Onotheootheroha

nd,

Aco∩oBco=o{1,o3,o5}o∩o{1,o2,o3}o=o{1,o3}.

Similarly,oweohaveoAo∩oBo=o{4,o6},oand

(Ao∩oB)co=o{1,o2,o3,o5}.

Ono theo othero hand,

Aco∪oBco=o{1,o3,o5}o∪o{1,o2,o3}o=o{1,o2,o3,o5}.


SolutionotooProblemo1.2.o (a)oByousingoaoVennodiagramoitocanobeoseenotha
toforoanyo setsoSoandoTo,oweohave
So=o(So∩oTo)o∪o(So∩oTc).

(Alternatively,oargueothatoanyoxomustobelongotooeitheroTo orotooTc,osooxobel
ongsotooSo ifoandoonlyoifoitobelongsotooSo∩oTo orotooSo∩oTc.)o Applyothisoe
qualityowithoSo=oA coando To =oB,otooobtainotheofirstorelation

Aco=o(Aco∩oB)o∪o(Aco∩oBc).

InterchangeotheorolesoofoAoandoBotooobtainotheosecondorelation.
(b) Byo Deo Morgan’so law,o weo have

(Ao∩oB)co=oA co∪oBc,

ando byo usingo theo equalitieso ofo parto (a),o weo obtain
o
(A∩B)co =o (A c∩B)∪(A c∩B c) ∪ (A∩B c)∪(A c∩B c) =o (Ac∩B)∪(Ac∩Bc)∪(A∩Bc).


(c) Weo haveo Ao=o{1,o3,o5}oando Bo =o{1,o2,o3},o soo Ao∩oBo =o{1,o3}.o Therefore,

(Ao∩oB)co=o{2,o4,o5,o6},

2




about:blank 2/134

,15/06/2023o01:49 Solutionomanualoforointroductionotooprobabilit
y




and
Aco∩oBo=o{2}, Aco∩oBco=o{4,o6}, Ao∩oBco=o{5}.

Thus,o theo equalityo ofo parto (b)o iso verified.
Solutiono too Problemo 1.5.o Leto Go ando Co beo theo eventso thato theo choseno st
udento iso ao geniuso ando ao chocolateo lover,o respectively.o Weo haveo P(G)o =o 0.
6,o P(C)o =o 0.7,o and
P(Go∩oC)o=o0.4.o WeoareointerestedoinoP(Gco∩oCc),owhichoisoobtainedowithotheofollowing
calculation:
o
P(Gco∩C c)o =o 1−P(G∪C)o =o 1− P(G)+P(C)−P(G∩C) =o 1−(0.6+0.7−0.4)o =o 0.1.


SolutionotooProblemo1.6.o Weofirstodetermineotheoprobabilitiesoofotheosixop
ossibleo outcomes.o Leto ao =o P({1})o =o P({3})o =o P({5})o ando bo =o P({2})o =
o P({4})o =o P({6}).
Weoareogivenothatobo=o2a.oByotheoadditivityoandonormalizationoaxioms,o1o=
o3ao+o3bo=o 3ao+o6ao=o9a.o Thus,o ao=o1/9,o bo=o2/9,o ando P({1,o2,o3})o=o4/
9.
SolutionotooProblemo1.7.o Theooutcomeoofothisoexperimentocanobeoanyofiniteos
equenceo ofotheoformo(a 1,oa2,o.o.o.o,oa n),owhereonoisoanoarbitraryopositiveoint
eger,oa 1,oa2,o.o.o.o,oa n—
1o belongotoo{1,o3},oandoa no belongsotoo{2,o4}.o Inoaddition,othereoareopossi
bleooutcomes
ino whicho ano eveno numbero iso nevero obtained.o Sucho outcomeso areo infiniteo sequences
(a1,oa2 ,o.o.o.),owithoeachoelementoinotheosequenceobelongingotoo{1,o3}.o Theosam
pleospaceo consistsoofoallopossibleooutcomesoofotheoaboveotwootypes.
SolutionotooProblemo1.8.o Letopio beotheoprobabilityoofowinningoagainstotheoop
ponento playedoinotheoithoturn.oThen,oyouowillowinotheotournamentoifoyouowi
noagainstotheo2ndo playero(probabilityop2 )oandoalsooyouowinoagainstoatoleasto
oneoofotheotwoootheroplayers
[probabilityop1 o+o(1o−op1 )p3 o =op1 o+op3 o−op1 p3 ].o Thus,otheoprobabilityoofowin
ningotheo tournamentois
p2(p1 o+op3 o−op1p3).
Theo ordero (1,o2,o3)o iso optimalo ifo ando onlyo ifo theo aboveo probabilityo iso noo less
o thano theo probabilitiesocorrespondingotootheotwooalternativeoorders,oi.e.,

p2 (p1 o +op 3 o−op1p3)o≥op1(p 2o +op 3o−op

2p3 ),o p2 (p 1 o +op 3o −op1p3 )o≥op3(p 2 o +op

1o −op2p1).

Itocanobeoseenothatotheofirstoinequalityoaboveoisoequivalentotoop2o ≥op1,owhileothe
osecondo inequalityoaboveoisoequivalentotoop2o ≥op3.

i=1 ∪ o Si,o weo have
Solutiono too Problemo 1.9.o (a)o Sinceo Ωo=o n



n
[
Ao=o o (Ao∩oSi),
i=1


whileotheosetsoAo∩oSio areodisjoint.oTheoresultofollowsobyousingotheoadditivityoaxiom.
(b)oTheoeventsoBo∩oCc,oBco∩oC,oBo∩oC,oandoBco∩oCcoformoaopartitionoofo
Ω,osoobyoparto (a),oweohave

P(A)o=oP(Ao∩oBo∩oCc)o+oP(Ao∩oBco∩oC)o+oP(Ao∩oBo∩oC)o+oP(Ao∩oBco∩oCc).o o (1)

3




about:blank 3/134

, 15/06/2023o01:49 Solutionomanualoforointroductionotooprobabilit
y




TheoeventoAo∩oBocanobeowrittenoasotheounionoofotwoodisjointoeventsoasofollows:

Ao∩oBo=o(Ao∩oBo∩oC)o∪o(Ao∩oBo∩oCc),

soothato
P(Ao∩oB)o=oP(Ao∩oBo∩oC)o+oP(Ao∩oBo∩oCc). (2)
Similarly,
P(Ao∩oC)o=oP(Ao∩oBo∩oC)o+oP(Ao∩oBco∩oC). (3)

Combiningo Eqs.o (1)-(3),o weo obtaino theo desiredo result.
Solutiono too Problemo 1.10.o SinceotheoeventsoAo∩oBco andoA co∩oBo areodisj
oint,oweo haveousingotheoadditivityoaxiomorepeatedly,
o
P (A∩Bc)∪(A co∩B) =o P(A∩Bc)+P(A co∩B)o =o P(A)−P(A∩B)o+P(B)−P(A∩B).


SolutionotooProblemo1.14.o (a)oEachopossibleooutcomeohasoprobabilityo1/36.
oThereo areo6opossibleooutcomesothatoareodoubles,osootheoprobabilityoofodoub
lesoiso6/36o=o1/6.
(b) Theoconditioningo evento (sumo iso 4o oro less)o consistso ofo theo 6o outcomes

(1,o1),o(1,o2),o(1,o3),o(2,o1),o(2,o2),o(3,o1)o ,

2oofowhichoareodoubles,osootheoconditionaloprobabilityoofodoublesoiso2/6o=o1/3.
(c) Thereoareo11opossibleooutcomesowithoatoleastooneo6,onamely,o(6,o6),o(6,oi),o
ando(i,o6),o foro io=o1,o2,o.o.o.o,o5.o Thus,o theo probabilityo thato ato leasto oneo die
o iso ao 6o iso 11/36.
(d) Thereoareo30opossibleooutcomesowhereotheodiceolandoonodifferentonumbers.
oOutoofo these,othereoareo10ooutcomesoinowhichoatoleastooneoofotheorollsoisoao
6.oThus,otheodesiredo conditionaloprobabilityoiso10/30o=o1/3.
Solutiono too Problemo 1.15.o Leto Ao beo theo evento thato theo firsto tosso iso ao
heado ando letoBobeotheoeventothatotheosecondotossoisoaohead.o Weomustocom
pareotheoconditionalo probabilitieso P(Ao∩oBo|oA)o ando P(Ao∩oBo|oAo∪oB).o W
eo have
o
P (Ao∩oB)o∩oA P(Ao∩oB)o
P(Ao∩oBo|oA)o=o =o ,
P(A) P(A)

and o
P (Ao∩oB)o∩o(Ao∪oB) P(Ao∩oB)o
P(Ao∩oBo|oAo∪oB)o=o =o .
P(Ao∪oB P(Ao∪oB
) )
SinceoP(Ao∪oB)o≥oP(A),otheofirstoconditionaloprobabilityoaboveoisoatoleastoasol
arge,osoo Aliceoisoright,oregardlessoofowhetherotheocoinoisofairooronot.o Inotheo
caseowhereotheocoino iso fair,o thato is,o ifo allo fouro outcomeso HH,o HTo,o TH,o TT
o areo equallyo likely,o weo have

P(Ao∩oB)o 1/4o 1o P(Ao∩oB)o 1/4o 1o
=o =o , =o =o .
P(A) 1/2o P(Ao∪oB 3/4o o 3
o 2 )

Ao generalizationo ofo Alice’so reasoningo iso thato ifo A′,o B′ ,o ando C ′ oareo eve
ntso sucho thato B′ o ⊂o C′o ando A′ o∩oB′o =o A′ o∩oC′o (foro exampleo ifo A′ o⊂o B′ o
⊂o C′),o theno theo event

4




about:blank 4/134

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ALPHANURSE Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
7 months
Number of followers
1
Documents
496
Last sold
2 months ago

4.9

360 reviews

5
317
4
37
3
5
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions