100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

SOLUTION MANUAL Game Theory Basics 1st Edition by Bernhard von Stengel. Chapters 1-12

Rating
-
Sold
-
Pages
68
Grade
A+
Uploaded on
24-04-2025
Written in
2024/2025

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Show more Read less
Institution
Game Theory Basics By Bernhard Von Stengel
Course
Game Theory Basics By Bernhard Von Stengel











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Game Theory Basics By Bernhard Von Stengel
Course
Game Theory Basics By Bernhard Von Stengel

Document information

Uploaded on
April 24, 2025
Number of pages
68
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

SOLUTION MANUAL Game Theory
Basics 1st Edition by Bernhardvon
Stengel. Chapters 1-12




1

,TABLE OF CONTENTS R R R




1 - Nim and Combinatorial Games
R R R R R




2 - Congestion Games
R R R




3 - Games in Strategic Form
R R R R R




4 - Game Trees with Perfect Information
R R R R R R




5 - Expected Utility
R R R




6 - Mixed Equilibrium
R R R




7 - Brouwer’s Fixed-Point Theorem
R R R R




8 - Zero-Sum Games
R R R




9 - Geometry of Equilibria in Bimatrix Games
R R R R R R R




10 - Game Trees with Imperfect Information
R R R R R R




11 - Bargaining
R R




12 - Correlated Equilibrium
R R R




2

,Game Theory Basics
R R




Solutions to Exercises
R R



©R BernhardRvonRStengelR2022

SolutionRtoRExerciseR1.1

(a) LetR≤RbeRdefinedRbyR(1.7).R ToRshowRthatR≤RisRtransitive,RconsiderRx,Ry,RzRwithRxR ≤RyRandRyR≤Rz.RIfRxR
=RyRthenRxR≤Rz,RandRifRyR=RzRthenRalsoRxR≤Rz.RSoRtheRonlyRcaseRleftRisRxR<RyRandRyR <Rz,RwhichRimpl
iesRxR <RzRbecauseR<RisRtransitive,RandRhenceRxR ≤Rz.
Clearly,R≤RisRreflexiveRbecauseRxR=RxRandRthereforeRxR≤Rx.
ToRshowRthatRRRRR
≤ isRantisymmetric,RconsiderRxRandRyRwithRxRRRRRyRand
≤RyRRRRRx.RIfRwe
≤ RhadRxR≠RyRthe
nRxR<RyRandRyR<Rx,RandRbyRtransitivityRxR<RxRwhichRcontradictsR(1.38).RHenceRxR=R y,RasRrequired.
R ThisRshowsRthatR ≤RisRaRpartialRorder.


Finally,RweRshowR(1.6),RsoRweRhaveRtoRshowRthatRxR<RyRimpliesRxRRRyRandRxR≤ ≠RyRandRviceRversa.RL
etRxR<Ry,RwhichRimpliesRxRyRbyR(1.7).RIfRweRhadR≤xR=RyRthenRxR<Rx,RcontradictingR(1.38),RsoRweRalsoR
haveRxR≠Ry.R Conversely,RxRRR yRandRxR≠RyRimplyRbyR(1.7)RxR <R yRorR xR =≤R yRwhereRtheRsecondRcaseRisRex
cluded,RhenceR xR <R y,RasRrequired.
(b) ConsiderRaRpartialRorderRand≤RassumeR(1.6)RasRaRdefinitionRofR<.RToRshowRthatR<RisRtransitive,Rs
upposeRxR<Ry,RthatRis,RxRyRandRxR≠Ry,Rand≤ RyR<Rz,RthatRis,RyRzRandRyR≠Rz.RBecauseRRRRisRtransitive,RxRRR

Rz.RIfRweRhadRxR=RzRthenRxRRRRRyRandRyRRRRRxRandRhenceRxR=RyRbyRantisymmetryR ofRRRR ,RwhichR contra
≤ ≤ ≤ ≤
dictsR xR ≠R y,RsoRweRhaveR xRRRRzRandR xR ≠R z,RthatRis,RxR <R zRbyR(1.6),RasRrequired.
≤ ≤
Also,R<RisRirreflexive,RbecauseRxR<RxRwouldRbyRdefinitionRmeanRxRRRxRandRxR≤ ≠Rx,RbutRtheRlatterRis
RnotRtrue.


Finally,RweRshowR(1.7),RsoRweRhaveRtoRshowRthatRxR ≤RyRimpliesRxR<RyRorRxR=RyRandRviceRversa,Rgi
venRthatR<RisRdefinedRbyR(1.6).RLetRxR≤Ry.RThenRifRxR=Ry,RweRareRdone,RotherwiseRxR≠RyRandRthenR
byRdefinitionRxR<Ry.RHence,RxR≤RyRimpliesRxR<RyRorRxR=Ry.RConversely,RsupposeRxR <R yRorRxR=Ry.R If
RxR <R yRthenRxR ≤RyRbyR(1.6),RandRifRxR=RyRthenRxR ≤R yRbecauseR ≤RisRreflexive.R ThisRcompletesRtheR

proof.

SolutionRtoRExerciseR1.2

(a) InR analysingR theR gamesR ofR threeR NimR heapsR whereR oneR heapR hasR sizeR one,R weR firstR lookRatRsomeR
examples,RandRthenRuseRmathematicalRinductionRtoRproveRwhatRweRconjectureRtoRbeRtheRlosingRposi
tions.RARlosingRpositionRisRoneRwhereReveryRmoveRisRtoRaRwinningRposition,RbecauseRthenRtheRo
pponentRwillRwin.R TheRpointRofRthisRexerciseRisRtoRformulateRaRpreciseRstatementRtoRbeRproved,R
andRthenRtoRproveRit.
First,RifRthereRareRonlyRtwoRheapsRrecallRthatRtheyRareRlosingRifRandRonlyRifRtheRheapsRareRofReq
ualRsize.R IfRtheyRareRofRunequalRsize,RthenRtheRwinningRmoveRisRtoRreduceRtheRlargerRheapRsoRth
atRbothRheapsRhaveRequalRsize.




3

, ConsiderRthreeRheapsRofRsizesR1,Rm,Rn,RwhereR1RRRRRmRRRRR
≤ n.RWe
≤ RobserveRtheRfollowing:R1,R1,RmRi
sRwinning,RbyRmovingRtoR1,R1,R0.RSimilarly,R1,Rm,RmRisRwinning,RbyRmovingRtoR0,Rm,Rm.RNext,R1,R
2,R3RisRlosingR(observedRearlierRinRtheRlecture),RandRhenceR1,R2,RnRforRnR4RisRwinning.R1,R3,RnRisR
winningRforRanyRnR3RbyRmovingRtoR1,R3,R2.RForR1,R4,R5,RreducingRanyRheapRproducesRaRwinning
≥ ≥
Rposition,RsoRthisRisRlosing.


TheRgeneralRpatternRforRtheRlosingRpositionsRthusRseemsRtoRbe:R1,Rm,RmR1,RforReven+ RnumbersR
m.R ThisRincludesRalsoRtheRcaseRmR=R0,RwhichRweRcanRtakeRasRtheRbaseRcaseRforRanRinduction.R W
eRnowRproceedRtoRproveRthisRformally.
FirstRweRshowRthatRifRtheRpositionsRofRtheRformR1,Rm,RnRwithRmRRRRRRnRare≤RlosingRwhenRmRisReven
RandRnR=RmR1,RthenRtheseRareRtheRonlyRlosingRpositionsRbecauseRanyRotherRpositionR1, Rm,RnR with
+
RmR R nR isRwinning.R Namely,RifRmR =RnR thenRaRwinningRmoveRfromR1, Rm,RmRisRtoR0, Rm, Rm,RsoRweRcanR

assumeRmR<Rn.R IfRmRisRevenRthenRnR>RmR R 1R(otherwiseRweRwouldRbeRinRtheRpositionR1,Rm,RmR R 1)R
+
andRsoRtheRwinningRmoveRisRtoR1,Rm,RmR R 1.RIfRmRisRoddRthenRtheRwinningRmoveRisRtoR1,Rm,RmR1,Rth
+ +
eRsameRasRpositionR1,RmR1,RmR(thisRwouldR alsoR beR aR winningR moveR fromR 1,Rm,RmR soR thereR theR winni
ngR moveR isR notR unique). – −

Second,RweRshowRthatRanyRmoveRfromR1,Rm,RmR+R1RwithRevenRmRisRtoRaRwinningRposition,RusingRasRi
nductiveRhypothesisRthatR1,RmJ,RmJR+R1RforRevenRmJRandRmJR<RmRisRaRlosingRposition.RTheRmoveRt
oR0,Rm,RmR+R1RproducesRaRwinningRpositionRwithRcounter-
moveRtoR0,Rm,Rm.RARmoveRtoR1,RmJ,RmR+R1RforRmJR<RmRisRtoRaRwinningRpositionRwithRtheRcounter-
moveRtoR1,RmJ,RmJR+R1RifRmJRisRevenRandRtoR1,RmJ,RmJR−R1RifRmJRisRodd.RARmoveRtoR1,Rm,RmRisRtoRaR
winningRpositionRwithRcounter-
moveRtoR0,Rm,Rm.RARmoveRtoR1,Rm,RmJRwithR mJR<R mRisRalsoRtoRaRwinningRpositionRwithRtheRcounter-
moveRtoR1,RmJR−R1,RmJRifR mJRisRodd,RandRtoR1,RmJR 1,RmJRifRmJRisRevenR(inRwhichRcaseRmJR 1R<RmRbeca
useRmRisReven).RThisRconcludesRtheRinductionRproof.
+ +
ThisRresultRisRinRagreementRwithRtheRtheoremRonRNimRheapRsizesRrepresentedRasRsumsRofRpowersRo
fR2:R 1R R mR R ∗ nRRis+∗ 0
RlosingRifRandRonlyRif,RexceptRforR2 ,RtheRpowersRofR2RmakingRupRmRandRnRcomeRinR
+∗
pairs.RSoRtheseRmustRbeRtheRsameRpowersRofR2,RexceptRforR1R=R20,RwhichRoccursRinRonlyRmRorRn,Rwh
ereRweRhaveRassumedRthatRnRisRtheRlargerRnumber,RsoR1RappearsRinR theR representationRofR n:R WeR
haveR mR =R 2aRRRRRR2bRRRRRR2c
+ + +R ·R ·R · ·R ·R ·R ≥
forR aR >R bR >R cR >RRRRRRRR 1,RsoR
+ + +R ·R ·R ·R + +
mR isR even,R and,R withR theR sameR a,Rb,Rc,R.R.R.,R nR =R 2aR R R 2bR R R 2c 1R =R mRRRR 1.R Then
1 m
∗R +R ∗ +R ∗ ≡R∗
RRRRRR RRRRR n RRRRRR 0.R The R followingR isR an R example R using R theR bitR representation R where

mR=R12R(whichRdeterminesRtheRbitRpatternR1100,RwhichRofRcourseRdependsRonRm):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) WeRuseR(a).RClearly,R1,R2,R3RisRlosingRasRshownRinR(1.2),RandRbecauseRtheRNim-
sumRofRtheRbinaryRrepresentationsR01,R10,R11RisR00.RExamplesRshowRthatRanyRotherRpositionRi
sRwinning.RTheRthreeRnumbersRareRn,RnR 1,Rn+R R 2.RIf+RnRisRevenRthenRreducingRtheRheapRofRsizeRnR2Rt
oR1RcreatesRtheRpositionRn,RnR 1,R1RwhichRisRlosingRasRshownRinR(a).RIfRnRisRodd,RthenRnR 1RisRev
+ +
enRandRnRRR2R=R nRRR1RRR1RsoRbyRtheRsameRargument,RaRwinningRmoveRisRtoRreduceRtheRNimRhea
+ + (R +R )R+
pRofRsizeRnRtoR1R(whichRonlyRworksRifRnR >R1).




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
StuviaGrade Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
11
Member since
8 months
Number of followers
0
Documents
170
Last sold
1 month ago
Your One-Stop Shop For Quality Test Banks and Study Guides

You will find A+ Rated test banks and study resources for all subjects to help you pass your exams.

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions