100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

olution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Rating
-
Sold
-
Pages
1038
Grade
A+
Uploaded on
30-03-2025
Written in
2024/2025

olution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Institution
A First Course In Differential Equations With Mode
Course
A First Course in Differential Equations with Mode











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
A First Course in Differential Equations with Mode
Course
A First Course in Differential Equations with Mode

Document information

Uploaded on
March 30, 2025
Number of pages
1038
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

A First Course in Differential
mi mi mi mi mi




Equations with Modeling Ap mi mi mi




plications, 12th Edition by De mi mi mi mi




nnis G. Zill mi mi




Complete Chapter Solutions Manual ar
mi mi mi mi




e included (Ch 1 to 9)
mi mi mi mi mi




** Immediate Download
mi mi




** Swift Response
mi mi




** All Chapters included
mi mi mi

,SolutionmiandmiAnswermiGuide:miZill,miDIFFERENTIALmiEQUATIONSmiWithmiMODELINGmiAPPLICATIONSmi2024,mi9780357760192; miChapterm
i#1:




Solution and Answer Guide mi mi mi




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
mi mi mi mi mi mi mi


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS mi mi mi mi mi mi




TABLE OF CONTENTS MI MI




End of Section Solutions .................................................................................................................................... 1
mi mi mi



Exercises 1.1 ........................................................................................................................................................ 1
mi



Exercises 1.2 ......................................................................................................................................................14
mi



Exercises 1.3 ......................................................................................................................................................22
mi



Chapter 1 in Review Solutions ..................................................................................................................... 30
mi mi mi mi




END OF SECTION SOLUTIONS
MI MI MI




EXERCISES 1.1 M I




1. Second order; linear m i m i


4
2. Third order; nonlinear because of (dy/dx)
mi mi mi mi mi



3. Fourth order; linear mi mi



4. Second order; nonlinear because of cos(r + u)
mi mi mi mi mi mi mi


5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
mi mi mi mi mi mi mi mi

2
6. Second order; nonlinear because of Rmi mi mi mi mi



7. Third order; linear mi mi


2
8. Second order; nonlinear because of ẋ
mi mi mi mi mi



9. First order; nonlinear because of sin (dy/dx)
mi mi mi mi mi mi



10. First order; linear mi mi


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonli
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


near in y because of y . However, writing it in the form (y —
2 2
mi mi mi mi mi mi mi mi mi mi mi mi mi


1)(dx/dy) + x = 0, we see that it is linear in x.
mi mi mi mi mi mi mi mi mi mi mi mi mi


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


it is linear in v. However, writing it in the form (v + uv —
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
mi mi mi mi mi mi mi mi mi mi mi mi mi



Frommiymi=mie− miwemiobtainmiyjmi=mi—m1 e−x/2.miThenmi2yjmi+miymi=mi—e−x/2mi+mie−x/2mi=mi0.
x/2 mi
13. i
2

,SolutionmiandmiAnswermiGuide:miZill,miDIFFERENTIALmiEQUATIONSmiWithmiMODELINGmiAPPLICATIONSmi2024,mi9780357760192; miChapterm
i#1:




6 6 —
14. From y = mi mi — e we obtain dy/dt = 24e
mi mi mi mi , so that
mi mi

5 5
mimi
dy −20t 6 6 mi

— −20t
5 mi

e
3x
15. From y = e mi mi cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


12e 3x
mi sin 2x, so that yjj — 6yj + 13y = 0.
mi mi mi mi mi mi mi mi mi mi

j
16. From y = — mi mi mi = —1 + sin x ln(sec x + tan x) and
mi mi mi mi mi mi mi mi mi mi

cos x ln(sec x + tan x) we obtain y
mi mi mi mi mi mi mi mi mi mi

jj
y m i = tan x + cos x ln(sec x + tan x). Then y
mi mi mi mi mi mi mi mi mi mi mi mi m i + y = tan x.
mi mi mi mi



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


we have mi



j −
—x)y = (y — x)[1 + (2(x + 2) ]
m i mi mi mi mi mi mi mi




−1/2
= y — x + 2(y —
mi mi mi mi mi mi




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
mi mi mi mi mi mi mi mi mi mi




= y — x + 8(x + 2)1/2
mi mi mi mi mi mi mi
−1/2m i =miym i — mixmi+mi8.


An interval of definition for the solution of the differential equation is (—
mi mi mi mi mi mi mi mi mi mi mi mi


2, ∞) because yj is not defined at x = —2.
mi mi mi mi mi mi mi mi mi mi



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi m i m i mi mi mi


{x m i m i 5x /= π/2 + nπ}
mi mi mi mi



or {x mi
m i
x /= π/10 + nπ/5}. Fromj y = 25 2sec
mi mi mi mi mi mi m i mi mi m i 5x we have mi mi




2 2 2
y .

An interval of definition for the solution of the differential equation is (—
mi mi mi mi mi mi mi mi mi mi mi mi


π/10, π/10). An- other interval is (π/10, 3π/10), and so on.
mi mi mi mi mi mi mi mi mi mi



19. The domain of the function is {x
mi 4 — x mi mi mi mi mi mi mi /= 0} or {x
m i mi mi x /= —
m i m i


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
mi mi m i m i mi mi m i mi mi mi mi mi


m i m i 1
yj = 2x mi mi m i = 2xy2. mi
2

4 — x2
mi mi



An interval of definition for the solution of the differential equation is (—
mi mi mi mi mi mi mi mi mi mi mi mi


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
mi mi mi mi mi mi mi mi mi mi


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi


Thus, the domain is {x x /= π/2 + 2nπ}. From y = 2— (1 — sin x) (— cos x) we have
mi mi mi mi m i mi mi mi mi mi mi mi mi m i mi mi mi mi mi mi mi




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi mi




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anoth
mi mi mi mi mi mi mi mi mi mi mi mi mi mi

, SolutionmiandmiAnswermiGuide:miZill,miDIFFERENTIALmiEQUATIONSmiWithmiMODELINGmiAPPLICATIONSmi2024,mi9780357760192; miChapterm
i#1:
ermionemiismi(5π/2,m9 i π/2),miandmiso mion.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Sucessguaranteed OXFORD UNIVERSITY
View profile
Follow You need to be logged in order to follow users or courses
Sold
49
Member since
1 year
Number of followers
0
Documents
559
Last sold
1 month ago

3.6

11 reviews

5
6
4
0
3
2
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions