1. The value of ∫01x2 dx\int_0^1 x^2 \, dx∫01x2dx is:
A. 13\frac{1}{3}31
B. 12\frac{1}{2}21
C. 14\frac{1}{4}41
D. 1
Answer: a) 13\frac{1}{3}31
Rationale:
∫01x2 dx=[x33]01=13−0=13\int_0^1 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1}{3} -
0 = \frac{1}{3}∫01x2dx=[3x3]01=31−0=31.
2. The second derivative of f(x)=2x3−5x2+xf(x) = 2x^3 - 5x^2 + xf(x)=2x3−5x2+x is:
A. 12x2−10x+112x^2 - 10x + 112x2−10x+1
B. 12x2−10x12x^2 - 10x12x2−10x
C. 6x2−10x+16x^2 - 10x + 16x2−10x+1
D. 6x2−10x6x^2 - 10x6x2−10x
Answer: b) 12x2−10x12x^2 - 10x12x2−10x
Rationale:
First derivative: f′(x)=6x2−10x+1f'(x) = 6x^2 - 10x + 1f′(x)=6x2−10x+1
Second derivative: f′′(x)=12x2−10xf''(x) = 12x^2 - 10xf′′(x)=12x2−10x.
3. The value of ∫01(4x+3) dx\int_0^1 (4x + 3) \, dx∫01(4x+3)dx is:
A. 3
B. 4
C. 5
D. 7
,Answer: c) 5
Rationale:
∫01(4x+3) dx=[2x2+3x]01=(2+3)−(0)=5\int_0^1 (4x + 3) \, dx = \left[ 2x^2 + 3x \right]_0^1 = (2
+ 3) - (0) = 5∫01(4x+3)dx=[2x2+3x]01=(2+3)−(0)=5.
4. The sum of the roots of the quadratic equation 2x2+5x−3=02x^2 + 5x - 3 = 02x2+5x−3=0 is:
A. −52-\frac{5}{2}−25
B. 52\frac{5}{2}25
C. −53-\frac{5}{3}−35
D. 53\frac{5}{3}35
Answer: a) −52-\frac{5}{2}−25
Rationale: Using the sum of roots formula −ba\frac{-b}{a}a−b for ax2+bx+c=0ax^2 + bx + c =
0ax2+bx+c=0, we get:
Sum = −52\frac{-5}{2}2−5.
5. The equation 3x2+5x+2=03x^2 + 5x + 2 = 03x2+5x+2=0 has discriminant:
A. 555
B. 252525
C. −5-5−5
D. 111
Answer: b) 252525
Rationale:
The discriminant is given by b2−4acb^2 - 4acb2−4ac, where a=3a = 3a=3, b=5b = 5b=5, and
c=2c = 2c=2. So, the discriminant is 52−4(3)(2)=25−24=255^2 - 4(3)(2) = 25 - 24 =
2552−4(3)(2)=25−24=25.
6. Find the roots of the equation x2−5x+6=0x^2 - 5x + 6 = 0x2−5x+6=0:
A. 1,61, 61,6
, B. −1,−6-1, -6−1,−6
C. 2,32, 32,3
D. 3,23, 23,2
Answer: c) 2,32, 32,3
Rationale:
Factoring the equation x2−5x+6=0x^2 - 5x + 6 = 0x2−5x+6=0 gives (x−2)(x−3)=0(x - 2)(x - 3)
= 0(x−2)(x−3)=0, so the roots are x=2x = 2x=2 and x=3x = 3x=3.
7. The second derivative of f(x)=x2+3x+5f(x) = x^2 + 3x + 5f(x)=x2+3x+5 is:
A. 2
B. 3
C. 0
D. 1
Answer: a) 2
Rationale:
The first derivative is f′(x)=2x+3f'(x) = 2x + 3f′(x)=2x+3, and the second derivative is
f′′(x)=2f''(x) = 2f′′(x)=2.
8. The solution to the equation 3x+4=103x + 4 = 103x+4=10 is:
A. x=2x = 2x=2
B. x=23x = \frac{2}{3}x=32
C. x=6x = 6x=6
D. x=4x = 4x=4
Answer: a) x=2x = 2x=2
Rationale:
Solve 3x+4=103x + 4 = 103x+4=10 by subtracting 4 from both sides:
3x=63x = 63x=6
x=2x = 2x=2.
A. 13\frac{1}{3}31
B. 12\frac{1}{2}21
C. 14\frac{1}{4}41
D. 1
Answer: a) 13\frac{1}{3}31
Rationale:
∫01x2 dx=[x33]01=13−0=13\int_0^1 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1}{3} -
0 = \frac{1}{3}∫01x2dx=[3x3]01=31−0=31.
2. The second derivative of f(x)=2x3−5x2+xf(x) = 2x^3 - 5x^2 + xf(x)=2x3−5x2+x is:
A. 12x2−10x+112x^2 - 10x + 112x2−10x+1
B. 12x2−10x12x^2 - 10x12x2−10x
C. 6x2−10x+16x^2 - 10x + 16x2−10x+1
D. 6x2−10x6x^2 - 10x6x2−10x
Answer: b) 12x2−10x12x^2 - 10x12x2−10x
Rationale:
First derivative: f′(x)=6x2−10x+1f'(x) = 6x^2 - 10x + 1f′(x)=6x2−10x+1
Second derivative: f′′(x)=12x2−10xf''(x) = 12x^2 - 10xf′′(x)=12x2−10x.
3. The value of ∫01(4x+3) dx\int_0^1 (4x + 3) \, dx∫01(4x+3)dx is:
A. 3
B. 4
C. 5
D. 7
,Answer: c) 5
Rationale:
∫01(4x+3) dx=[2x2+3x]01=(2+3)−(0)=5\int_0^1 (4x + 3) \, dx = \left[ 2x^2 + 3x \right]_0^1 = (2
+ 3) - (0) = 5∫01(4x+3)dx=[2x2+3x]01=(2+3)−(0)=5.
4. The sum of the roots of the quadratic equation 2x2+5x−3=02x^2 + 5x - 3 = 02x2+5x−3=0 is:
A. −52-\frac{5}{2}−25
B. 52\frac{5}{2}25
C. −53-\frac{5}{3}−35
D. 53\frac{5}{3}35
Answer: a) −52-\frac{5}{2}−25
Rationale: Using the sum of roots formula −ba\frac{-b}{a}a−b for ax2+bx+c=0ax^2 + bx + c =
0ax2+bx+c=0, we get:
Sum = −52\frac{-5}{2}2−5.
5. The equation 3x2+5x+2=03x^2 + 5x + 2 = 03x2+5x+2=0 has discriminant:
A. 555
B. 252525
C. −5-5−5
D. 111
Answer: b) 252525
Rationale:
The discriminant is given by b2−4acb^2 - 4acb2−4ac, where a=3a = 3a=3, b=5b = 5b=5, and
c=2c = 2c=2. So, the discriminant is 52−4(3)(2)=25−24=255^2 - 4(3)(2) = 25 - 24 =
2552−4(3)(2)=25−24=25.
6. Find the roots of the equation x2−5x+6=0x^2 - 5x + 6 = 0x2−5x+6=0:
A. 1,61, 61,6
, B. −1,−6-1, -6−1,−6
C. 2,32, 32,3
D. 3,23, 23,2
Answer: c) 2,32, 32,3
Rationale:
Factoring the equation x2−5x+6=0x^2 - 5x + 6 = 0x2−5x+6=0 gives (x−2)(x−3)=0(x - 2)(x - 3)
= 0(x−2)(x−3)=0, so the roots are x=2x = 2x=2 and x=3x = 3x=3.
7. The second derivative of f(x)=x2+3x+5f(x) = x^2 + 3x + 5f(x)=x2+3x+5 is:
A. 2
B. 3
C. 0
D. 1
Answer: a) 2
Rationale:
The first derivative is f′(x)=2x+3f'(x) = 2x + 3f′(x)=2x+3, and the second derivative is
f′′(x)=2f''(x) = 2f′′(x)=2.
8. The solution to the equation 3x+4=103x + 4 = 103x+4=10 is:
A. x=2x = 2x=2
B. x=23x = \frac{2}{3}x=32
C. x=6x = 6x=6
D. x=4x = 4x=4
Answer: a) x=2x = 2x=2
Rationale:
Solve 3x+4=103x + 4 = 103x+4=10 by subtracting 4 from both sides:
3x=63x = 63x=6
x=2x = 2x=2.