1. Solve for x: 2x−3=72x - 3 = 72x−3=7
A. x=5x = 5x=5
B. x=3x = 3x=3
C. x=2x = 2x=2
D. x=10x = 10x=10
Answer: A) x=5x = 5x=5
Rationale:
To solve 2x−3=72x - 3 = 72x−3=7, add 3 to both sides:
2x=102x = 102x=10, then divide by 2:
x=5x = 5x=5.
2. Find the solution to the system of equations:
3. The derivative of f(x)=3x2−5x+2f(x) = 3x^2 - 5x + 2f(x)=3x2−5x+2 is:
A. 6x−56x - 56x−5
B. 6x+56x + 56x+5
C. 3x−53x - 53x−5
D. 6x−26x - 26x−2
Answer: A) 6x−56x - 56x−5
Rationale:
The derivative of f(x)=3x2−5x+2f(x) = 3x^2 - 5x + 2f(x)=3x2−5x+2 is found by applying basic
differentiation rules:
f′(x)=6x−5f'(x) = 6x - 5f′(x)=6x−5.
4. What is the value of ∫01(3x2) dx\int_0^1 (3x^2) \, dx∫01(3x2)dx?
,A. 111
B. 13\frac{1}{3}31
C. 333
D. 12\frac{1}{2}21
Answer: B) 13\frac{1}{3}31
Rationale:
Integrating 3x23x^23x2 with respect to xxx:
∫3x2 dx=x3\int 3x^2 \, dx = x^3∫3x2dx=x3, so
∫013x2 dx=[x3]01=1−0=1\int_0^1 3x^2 \, dx = [x^3]_0^1 = 1 - 0 = 1∫013x2dx=[x3]01=1−0=1.
5. The equation of a line with gradient 2 and passing through the point (1,3)(1, 3)(1,3) is:
A. y=2x+1y = 2x + 1y=2x+1
B. y=2x+3y = 2x + 3y=2x+3
C. y=3x+2y = 3x + 2y=3x+2
D. y=x+3y = x + 3y=x+3
Answer: B) y=2x+3y = 2x + 3y=2x+3
Rationale:
Using the point-slope form y−y1=m(x−x1)y - y_1 = m(x - x_1)y−y1=m(x−x1), with m=2m =
2m=2 and (x1,y1)=(1,3)(x_1, y_1) = (1, 3)(x1,y1)=(1,3), we get:
y−3=2(x−1)y - 3 = 2(x - 1)y−3=2(x−1), which simplifies to:
y=2x+3y = 2x + 3y=2x+3.
6. Solve for xxx: log2(x−3)=4\log_2 (x - 3) = 4log2(x−3)=4
A. x=16x = 16x=16
B. x=7x = 7x=7
C. x=4x = 4x=4
D. x=8x = 8x=8
, Answer: B) x=7x = 7x=7
Rationale:
We solve log2(x−3)=4\log_2 (x - 3) = 4log2(x−3)=4 by rewriting it in exponential form:
x−3=24=16x - 3 = 2^4 = 16x−3=24=16, so x=16+3=7x = 16 + 3 = 7x=16+3=7.
7. Find the value of sin45∘\sin 45^\circsin45∘:
A. 12\frac{1}{2}21
B. 22\frac{\sqrt{2}}{2}22
C. 32\frac{\sqrt{3}}{2}23
D. 111
Answer: B) 22\frac{\sqrt{2}}{2}22
Rationale:
Using the exact value for sin45∘\sin 45^\circsin45∘, we know that sin45∘=22\sin 45^\circ =
\frac{\sqrt{2}}{2}sin45∘=22.
A) x=4,y=2x = 4, y = 2x=4,y=2
B) x=5,y=1x = 5, y = 1x=5,y=1
C) x=3,y=3x = 3, y = 3x=3,y=3
D) x=7,y=1x = 7, y = 1x=7,y=1
Answer: A) x=4,y=2x = 4, y = 2x=4,y=2
Rationale:
By solving the system, adding both equations gives:
2x=82x = 82x=8, so x=4x = 4x=4.
Substituting x=4x = 4x=4 into x+y=6x + y = 6x+y=6, we get 4+y=64 + y = 64+y=6, so y=2y =
2y=2.
8. Solve for xxx in the equation 3x−7=113x - 7 = 113x−7=11:
A. x=5x = 5x=5
A. x=5x = 5x=5
B. x=3x = 3x=3
C. x=2x = 2x=2
D. x=10x = 10x=10
Answer: A) x=5x = 5x=5
Rationale:
To solve 2x−3=72x - 3 = 72x−3=7, add 3 to both sides:
2x=102x = 102x=10, then divide by 2:
x=5x = 5x=5.
2. Find the solution to the system of equations:
3. The derivative of f(x)=3x2−5x+2f(x) = 3x^2 - 5x + 2f(x)=3x2−5x+2 is:
A. 6x−56x - 56x−5
B. 6x+56x + 56x+5
C. 3x−53x - 53x−5
D. 6x−26x - 26x−2
Answer: A) 6x−56x - 56x−5
Rationale:
The derivative of f(x)=3x2−5x+2f(x) = 3x^2 - 5x + 2f(x)=3x2−5x+2 is found by applying basic
differentiation rules:
f′(x)=6x−5f'(x) = 6x - 5f′(x)=6x−5.
4. What is the value of ∫01(3x2) dx\int_0^1 (3x^2) \, dx∫01(3x2)dx?
,A. 111
B. 13\frac{1}{3}31
C. 333
D. 12\frac{1}{2}21
Answer: B) 13\frac{1}{3}31
Rationale:
Integrating 3x23x^23x2 with respect to xxx:
∫3x2 dx=x3\int 3x^2 \, dx = x^3∫3x2dx=x3, so
∫013x2 dx=[x3]01=1−0=1\int_0^1 3x^2 \, dx = [x^3]_0^1 = 1 - 0 = 1∫013x2dx=[x3]01=1−0=1.
5. The equation of a line with gradient 2 and passing through the point (1,3)(1, 3)(1,3) is:
A. y=2x+1y = 2x + 1y=2x+1
B. y=2x+3y = 2x + 3y=2x+3
C. y=3x+2y = 3x + 2y=3x+2
D. y=x+3y = x + 3y=x+3
Answer: B) y=2x+3y = 2x + 3y=2x+3
Rationale:
Using the point-slope form y−y1=m(x−x1)y - y_1 = m(x - x_1)y−y1=m(x−x1), with m=2m =
2m=2 and (x1,y1)=(1,3)(x_1, y_1) = (1, 3)(x1,y1)=(1,3), we get:
y−3=2(x−1)y - 3 = 2(x - 1)y−3=2(x−1), which simplifies to:
y=2x+3y = 2x + 3y=2x+3.
6. Solve for xxx: log2(x−3)=4\log_2 (x - 3) = 4log2(x−3)=4
A. x=16x = 16x=16
B. x=7x = 7x=7
C. x=4x = 4x=4
D. x=8x = 8x=8
, Answer: B) x=7x = 7x=7
Rationale:
We solve log2(x−3)=4\log_2 (x - 3) = 4log2(x−3)=4 by rewriting it in exponential form:
x−3=24=16x - 3 = 2^4 = 16x−3=24=16, so x=16+3=7x = 16 + 3 = 7x=16+3=7.
7. Find the value of sin45∘\sin 45^\circsin45∘:
A. 12\frac{1}{2}21
B. 22\frac{\sqrt{2}}{2}22
C. 32\frac{\sqrt{3}}{2}23
D. 111
Answer: B) 22\frac{\sqrt{2}}{2}22
Rationale:
Using the exact value for sin45∘\sin 45^\circsin45∘, we know that sin45∘=22\sin 45^\circ =
\frac{\sqrt{2}}{2}sin45∘=22.
A) x=4,y=2x = 4, y = 2x=4,y=2
B) x=5,y=1x = 5, y = 1x=5,y=1
C) x=3,y=3x = 3, y = 3x=3,y=3
D) x=7,y=1x = 7, y = 1x=7,y=1
Answer: A) x=4,y=2x = 4, y = 2x=4,y=2
Rationale:
By solving the system, adding both equations gives:
2x=82x = 82x=8, so x=4x = 4x=4.
Substituting x=4x = 4x=4 into x+y=6x + y = 6x+y=6, we get 4+y=64 + y = 64+y=6, so y=2y =
2y=2.
8. Solve for xxx in the equation 3x−7=113x - 7 = 113x−7=11:
A. x=5x = 5x=5