100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition

Rating
-
Sold
-
Pages
208
Grade
A+
Uploaded on
19-03-2025
Written in
2024/2025

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Show more Read less
Institution
Machine Learning
Course
Machine learning











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Machine learning
Course
Machine learning

Document information

Uploaded on
March 19, 2025
Number of pages
208
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Linear Algebra and Optimization for Machine
Learning
1st Edition by Charu Aggarwal. Chapters 1 – 11




vii

,Contents


1 Linear Algebra and Optimization: An Introduction
B I B I B I B I B I 1


2 Linear Transformations and Linear Systems
BI BI BI BI 17


3 Diagonalizable Matrices and Eigenvectors
BI BI BI 35


4 Optimization Basics: A Machine Learning View
BI BI BI BI BI 47


5 Optimization Challenges and Advanced Solutions
BI BI BI BI 57


6 Lagrangian Relaxation and Duality
B I B I B I 63


7 Singular Value Decomposition
B I B I 71


8 Matrix Factorization
B I 81


9 The Linear Algebra of Similarity
B I B I B I B I 89


10 The Linear Algebra of Graphs
B I B I B I B I 95


11 Optimization in Computational Graphs
B I B I B I 101




viii

,Chapter 1 B I




Linear Algebra and Optimization: An Introduction
BI BI BI BI BI




1. For any two vectors x and y, which are each of length a, show that
B I B I B I B I B I B I B I B I B I B I B I B I B I B I



(i) x − y is orthogonal to x + y, and (ii) the dot product of x − 3y and x
B I B I BI BI B I BI BI BI BI BI BI BI BI BI BI BI BI BI BI B I BI



+ 3y is negative.
BI BI B I BI



(i) The first is simply
BI · −x x y y using the distributive property of matri
BI BI BI B I BI BB I B I B I BI BI BI BI BI BI



x multiplication. The
BI
· dot product of a vector with itself is its squared le BI
I
BI BI BI BI BI BI BI BI BI BI BI



ngth. Since both vectors are of the same length, it follows that the resul
BI BI BI BI BI BI BI BI BI BI BI BI BI



t is 0. (ii) In the second case, one can use a similar argument to show tha
BI BI BI BI BI BI BI BI BI BI BI BI BI BI BI BI



t the result is a2 − 9a2, which is negative.
BI BI BI BI BI BI BI BI BI




2. Consider a situation in which you have three matrices A, B, and C, of si
BI BI BI BI BI BI BI BI BI BI BI BI BI BI



zes 10 × 2, 2 × 10, and 10 × 10, respectively.
BI BI BI BI BI BI BI BI BI BI BI




(a) Suppose you had to compute the matrix product ABC. From an efficien
BI BI BI BI BI BI BI BI BI BI BI



cy per- BI



spective, would it computationally make more sense to compute (AB)C or
BI BI BI BI BI BI BI BI BI BI BI BI



would it make more sense to compute A(BC)?
BI BI BI BI BI BI BI




(b) If you had to compute the matrix product CAB, would it make more se
BI BI BI BI BI BI BI BI BI BI BI BI BI



nse to compute (CA)B or C(AB)?
BI BI B I B I B I




The main point is to keep the size of the intermediate matrix as smal
BI BI BI BI BI BI BI BI BI BI BI BI BI



l as possible in order to reduce both computational and space require
BI BI B I BI BI BI BI BI BI BI BI



ments. In the case of ABC, it makes sense to compute BC first. In the
BI BI BI BI BI BI BI BI BI BI BI BI BI BI BI



case of CAB it makes sense to compute CA first. This type of associati
BI BI BI BI BI BI BI BI BI BI BI BI BI



vity property is used frequently in machine learning in order to reduc
BI BI BI BI BI BI BI BI BI BI BI



e computational requirements.
BI BI




3. — A =
Show that if a matrix A satisfiesB I B I B I B I B I B I B I B I



AT , then all the diagonal elements of BI B I BI BI BI BI BI



the matrix are 0.
BI BI BI BI




Note that A + AT = 0. However, this matrix also contains twice the dia
BI BI BI BI BI BI BI BI BI BI BI BI BI BI



gonal elements of A on its diagonal. Therefore, the diagonal element
BI BI BI BI BI BI BI BI BI BI



s of A must be 0.
BI BI BI BI BI




4. Show that if we have a matrix satisfying
BI— A= BI BI BI BI BI BI BI BI




1

, AT , then for any column vector x,
BI BI BI BI BI BI BI BI



we have x Ax = 0.
BI B I
T
BI BI BI




Note that the transpose of the scalar xT Ax remains unchanged. Therefo
B I B I B I B I B I B I B I BI B I B I B I



re, we have
B I B I




xT Ax = (xT Ax)T = xT AT x = −xT Ax. Therefore, we have 2xT Ax = 0.
BI BI BI BI B I BI BI BI BI BI BI BI BI BI BI BI BI BI




2
$18.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
SkilledTeacher
3.0
(1)

Get to know the seller

Seller avatar
SkilledTeacher Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
9 months
Number of followers
3
Documents
365
Last sold
1 month ago
THE EXAMS LEAGUE!!!

EXAM CORPS!! In my shop you find all types of VERIFIED - TESTBANKS, SOLUTION MANUALS & OTHER STUDY MATERIALS for Business, Accounting & Nursing courses. Am dedicated to ensuring that you pass in your exams....SATISFACTION GUARANTEED!!!!

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions