100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary - Time Series Models (MSc Econometrics and Operations Research)

Rating
5.0
(1)
Sold
11
Pages
42
Uploaded on
19-03-2025
Written in
2024/2025

Summary Multivariate Econometrics for the Master Econometrics and Operational Research at the VU. This summary includes all course content that has been discussed in the lectures and tutorials. The summary contains the following topics: Time Series, Local Level Model, univariate models, parameter estimation, state space analysis, linear gaussian models, non linear non gaussian models, ML, SV model, QML, importance sampling, particle filter, bootstrap filter, kalman filter, kalman smoother, multivariate local level model, multivariate kalman filter and smoother, collapsing.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 19, 2025
Number of pages
42
Written in
2024/2025
Type
Summary

Subjects

Content preview

Summary

Joya da Silva Patricio Gomes

Time Series Models

Email:




March 19, 2025

,Contents

Week 1 1
Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Local Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Signal extraction: Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Signal extraction: Kalman Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Further inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Week 2 7
Linear Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Kalman Filter and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Further inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Week 3 15
Nonlinear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
More Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Simulation Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Stochastic Volatility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Quasi Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Week 4 20
Nonlinear Non-Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Stacked Form Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Mode Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Week 5 27
SPDK-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MC-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Bootstrap Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2

,Time Series Models Summary

Week 6 33
Multivariate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Multivariate Local Level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Multivariate Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Collapsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37




CONTENTS 3

, Week 1

Time series
A time series consists of n observations yt , ordered over time with index t = 1, . . . , n. If we
observe only one series over time, we refer to it as a univariate time series. If we observe
multiple series simultaneously, we refer to them as a multivariate time series (or panel
data). For example, let yit denote the homicide rate of country i in year t:
• Cross-sectional dimension indexed by i = 1, . . . , p (countries)
• Time-series dimension indexed by t = 1, . . . , n (years)
This means there are p · n observations in total. In time series, the part of the observation
that we aim to explain is called the signal and the noise is the part that remains unexplained.
The linear regression model (LRM) is

y t = Xt α + ϵt , ϵt ∼ N (0, σϵ2 ).

This can be expressed as
yt = signal + noise.
Estimation of the model using OLS and computation of the fitted values correspond to
extraction / estimation of signals.


Local Level Model
When data does not have any explanatory variables, we can try and estimate the constant
in the model
y t = α + ϵt .
Using OLS to estimate α will give us one constant level for the parameter while the level
might vary over time. In this case we try to model αt as a stochastic function over time:

α t +1 = α t + η t , ηt ∼ N (0, ση2 ).

Note that ηt is a random walk process (non-stationary). This makes the Local Level Model
(LLM):

y t = α t + ϵt ϵt ∼ N (0, σϵ2 )
α t +1 = α t + η t , ηt ∼ N (0, ση2 ),

where αt represents the state and ϵt the noise. The first equation is referred to as the obser-
vation equation (signal + noise). The second equation is called the state update equation.
In addition to these equations, we also need the initial condition α1 ∼ N ( a1 , P1 ). To account

1

Reviews from verified buyers

Showing all reviews
8 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
joyadasilva Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
1 year
Number of followers
0
Documents
4
Last sold
2 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions