graphical inequalities TRIg GRAPHS
y = sin(x) Solve
TO :
↳ I
---- sin(x) = K
10 0) ,
sin" (k) : 7
?: solid line shade below 180 K
y
-
,
y : dotted line shade ,
below
y 2: solid line, shaded above
y> : dolted line ,
shaded above
- max I mum
Y= COS()) COS((() 1 :
cos" (k) = <
10
, 1) 360 -
x
·
minimum
GRAPHICAL TRANSFORMATIONS
y = + an(x) tan(i) : I
① translation tan" (k) = x
y =
f(x + 3)
-
3 In the 20 0)
, 180 +C
y = 3+
f(x) In the
3 y
asymptotes
② stretch
y =
+ (2x) 1/2s f in C
y
= 2 f(x)) Isf in y cumulative Freq
.
③ reflection class frequency- cum .
Fq
O
y =
f( -
x) reflect in y 2515(30
- -
3
-
3
Il 14
y = -
f(x) reflect inx 3015L35
- -
-
2
3
3525L40
-
402sL4S 7
m
=
-
Quadratic formula : x = -
b b2 49 + 4SLS LSO -
7
30
2a
median
& Soth percentile
=>
Co-ORD geometry
a
UQ 3n isth percentile
I
midpoint
(
=
LQ 25th percentile
*
length =
2)2 (y yejm + -
.
+
Types OF GRAPH
gradient =
y .
-
y
~
-
32 ,
-
Xz
y x3
y= x x2
- y
=
=
y y
= =
negative means flip
y = sin(x) Solve
TO :
↳ I
---- sin(x) = K
10 0) ,
sin" (k) : 7
?: solid line shade below 180 K
y
-
,
y : dotted line shade ,
below
y 2: solid line, shaded above
y> : dolted line ,
shaded above
- max I mum
Y= COS()) COS((() 1 :
cos" (k) = <
10
, 1) 360 -
x
·
minimum
GRAPHICAL TRANSFORMATIONS
y = + an(x) tan(i) : I
① translation tan" (k) = x
y =
f(x + 3)
-
3 In the 20 0)
, 180 +C
y = 3+
f(x) In the
3 y
asymptotes
② stretch
y =
+ (2x) 1/2s f in C
y
= 2 f(x)) Isf in y cumulative Freq
.
③ reflection class frequency- cum .
Fq
O
y =
f( -
x) reflect in y 2515(30
- -
3
-
3
Il 14
y = -
f(x) reflect inx 3015L35
- -
-
2
3
3525L40
-
402sL4S 7
m
=
-
Quadratic formula : x = -
b b2 49 + 4SLS LSO -
7
30
2a
median
& Soth percentile
=>
Co-ORD geometry
a
UQ 3n isth percentile
I
midpoint
(
=
LQ 25th percentile
*
length =
2)2 (y yejm + -
.
+
Types OF GRAPH
gradient =
y .
-
y
~
-
32 ,
-
Xz
y x3
y= x x2
- y
=
=
y y
= =
negative means flip