Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein,
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
I I I I I 1–1
Chapter 2: Matrices
I 2–1
Chapter 3: Linear Programming, A Geometric Approach
I I I I I 3–1
Chapter 4: The Simplex Method
I I I 4–1
Chapter 5: Sets and Counting
I I I 5–1
Chapter 6: Probability
I 6–1
Chapter 7: Probability and Statistics
I I I 7–1
Chapter 8: Markov Processes
I I 8–1
Chapter 9: The Theory of Games
I I I I 9–1
Chapter 10: The Mathematics of Finance
I I I I 10–1
Chapter 11: Logic
I 11–1
Chapter 12: Difference Equations and Mathematical Models
I I I I I 12–1
, Chapter 1 I
ExercisesI1.1 5
6.I LeftI1,IdownI
2
1. RightI2,IupI3 y
y
(2,I3)
x
x
( )
–1,I –I52I
7.I LeftI20,IupI40
2. LeftI1,IupI4 y
y
(–20,I40)
(–1,I4)
x
x
8.I RightI25,IupI30
3.I DownI2 y
y
(25,I30)
x
x
(0,I–2)
9. PointIQIisI2IunitsItoItheIleftIandI2IunitsIupIor
4. RightI2
y (—2,I2).
10. PointIPIisI3IunitsItoItheIrightIandI2IunitsIdownIor
(3,—2).
x
(2,I0) 1I
11. —2(1)I+I (3)I=I—2I+1I=I—1soI yesI theI pointI is
3
onItheIline.
5. LeftI2,IupI1 1I
y 12. —2(2)I+I (6)I=I—1IisI false,I soI noI theI pointI isI not
3
onItheIline
(–2,I1)
x
CopyrightI©I2023IPearsonIEducation,IInc. 1-1
, ChapterI1:ILinearIEquationsIandIStraightILines ISM:IFiniteIMath
1I 24.I 0I=I5
13 —2xI+I yI =I—1I SubstituteI theI xI andI y noIsolution
3
. x-
coordinatesIofItheIpointIintoItheIequation:
f 1I hıI f h I intercept:InoneI
' ,I3 →I—2 ' 1 ı +1 I (3)I=I—1I→I—1+1I=I—1I is WhenIxI=I0,IyI=I5Iy-
y' ı 'I ı
intercept:I(0,I5)
2III J yI2J 3
aIfalseIstatement.ISoInoItheIpointIisInotIonItheIl 25.IWhenIyI=I0,IxI=I7Ix-
ine. intercept:I(7,I0)I0I
f 1h f1 h =I7
14 —2 ' ı + ' ı (—1)I=I—1I isItrueIsoIyesItheIpointIis noIsolution
.
'y3 ıJIII'y3 ıJ y-intercept:Inone
onItheIline. 26.I 0I=I–8x
15.I mI=I5,IbI=I8 xI=I0
x-intercept:I(0,I0)
16.I mI=I–2IandIbI=I–6 yI=I–8(0)
yI=I0
17.I yI=I0xI+I3;ImI=I0,IbI=I3 y-intercept:I(0,I0)
2I 2I 1I
yI=I xI+I0;I mI=I ,I bI=I0 27 0I=I xI–I1
18 3
3 3 .
. xI=I3
19.I 14xI+I7IyI=I21 x-intercept:I(3,I0)
1I
7IyI=I—14xI+I21 yI =I (0)I–I1
3
yI =I—2xI+I3
yI=I–1
y-intercept:I(0,I–1)
20 xI—IyI =I3 y
. —yI =I—xI+I3
yI =IxI—I3
(3,I0)
21.III 3xI=I5 x
5 (0,I–1)
xI=I
3
1 2
28. WhenIxI=I0,IyI=I0.
22 – xI+ yI =I10
. 2 3 WhenIxI=I1,IyI=I2.
2I 1I y
yI =I xI+10
3 2
3I
yI =I xI+15 (1,I2)
4 x
(0,I0)
23. 0I=I—4xI+I8
4xI =I8
xI=I2
x-intercept:I(2,I0)
yI=I–4(0)I+I8
yI=I8
y-intercept:I(0,I8)
1-2 CopyrightI©I2023IPearsonIEducation,IInc.