100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solutions manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill

Rating
-
Sold
-
Pages
852
Grade
A+
Uploaded on
23-02-2025
Written in
2024/2025

Differential equations solutions manual First course in differential equations solutions Solutions manual by Dennis G. Zill A First Course in Differential Equations solutions Modeling applications solutions manual Differential equations textbook solutions Dennis G. Zill 12th edition solutions Differential equations Zill solutions Differential equations manual 12th edition Zill differential equations answers A First Course in Differential Equations answers Zill modeling applications solutions Solutions manual for Zill's differential equations Differential equations answers manual Differential equations solutions guide Zill differential equations study guide Differential equations help manual Dennis G. Zill solutions resource Solutions for A First Course in Differential Equations Differential equations 12th edition answer key Differential equations answer guide by Zill Find solutions for differential equations 12th edition Manual for differential equations by Dennis G. Zill

Show more Read less
Institution
Differential Equations With Modeling Applications1
Course
Differential Equations with Modeling Applications1











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Differential Equations with Modeling Applications1
Course
Differential Equations with Modeling Applications1

Document information

Uploaded on
February 23, 2025
Number of pages
852
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • 9780357760192

Content preview

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,SolutionEandEAnswerEGuide:EZill,EDIFFERENTIALEEQUATIONSEWithEMODELINGEAPPLICATIONSE2024,E9780357760192;EChapte
rE#1:
IntroductionE toE DifferentialE Equations



Solution and Answer Guide E E E


ZILL,EDIFFERENTIALEEQUATIONSEWITHEMODELINGEAPPLICATIONSE2024,E 9780357
760192;ECHAPTERE#1:EINTRODUCTIONETOEDIFFERENTIALEEQUATIONS


TABLE OF CONTENTS E E




EndE ofE SectionE Solutions..............................................................................................................................................1
ExercisesE 1.1......................................................................................................................................................................... 1
ExercisesE 1.2....................................................................................................................................................................... 14
ExercisesE 1.3....................................................................................................................................................................... 22
ChapterE1EinEReviewESolutions ............................................................................................................................30




END OF SECTION SOLUTIONS
E E E




EXERCISES 1.1 E


1. SecondE order;E linear
2. ThirdE order;E nonlinearE becauseE ofE (dy/dx)4
3. FourthE order;E linear
4. SecondE order;E nonlinearE becauseE ofE cos(rE +Eu)
√E
5. SecondE order;E nonlinearE becauseE ofE (dy/dx)2EE or 1E +E (dy/dx)2
6. SecondE order;E nonlinearEbecauseE ofE R2
7. ThirdE order;E linear
8. SecondE order;E nonlinearEbecauseE ofE ẋE2
9. FirstE order;E nonlinearE becauseE ofEsinE(dy/dx)
10. FirstE order;E linear
11. WritingEtheE differentialE equationEinEtheE formE x(dy/dx)E +E y2E =E 1,E weEseeEthatEitEisEnonlin
earE inEyEbecauseEofEy2.EHowever,EwritingEitEinEtheEformE (y2E —
E1)(dx/dy)E+ExE=E 0,EweEseeEthatEitEisE linearE inE x.

12. WritingEtheEdifferentialEequationEinEtheEformEu(dv/du)E+E(1E+Eu)vE =E ueuE weEseeEthatEi
tEisE linearEinEv.EHowever,EwritingEitEinEtheEformE(vE+EuvE—
u
Eue )(du/dv)E+EuE= E 0,Ewe Esee EthatEitEisE nonlinear E inE u.

13. FromEyE=Ee x/2 weEobtainEyjE =E—2 x/2
.EThenE2yjE +EyE =E— x/2
+Ee x/2
=E0.
− 1E −
E e− e−




1

,SolutionEandEAnswerEGuide:EZill,EDIFFERENTIALEEQUATIONSEWithEMODELINGEAPPLICATIONSE2024,E9780357760192;EChapte
rE#1:
IntroductionE toE DifferentialE Equations

6 6 —
14. FromE yE = — e 20tEweEobtainEdy/dtE=E24e−20tE,EsoEthat
5 5
dyE+E20yE =E24e−20t 6 6E −20t
+E 20 —EE e =E 24.
dt 5 5

15. FromEyE=Ee3xEcosE2xEweEobtainEyjE =E3e3xEcosE2x—2e3xEsinE2xEandEyjjE =E5e3xEcosE2x—
12e3xEsinE2x,E soE thatE yjjE —E6yjE +E13yE=E 0.
j
16. FromEyE =E —EcosExEln(secExE+EtanEx)EweEobtainEyEE =E—1E+EsinExEln(secExE+EtanEx)Eand
jj jj
yEE =EtanExE+EcosExEln(secExE+EtanEx).EThenEyEE +EyE=E tanEx.
17. TheE domainE ofE theE function,E foundE byE solvingE x+2 E ≥E 0,E isE [—2,E∞).E From E yjEE =E 1+2(x+2)−1/2
weE have
j −
(yE —x)yE =E(yE—Ex)[1E+E(2(xE+E2)EE 1/2E ]

=EyE—ExE+E2(yE—x)(xE+E2)−1/2

=EyE —ExE+E2[xE+E4(xE+E2)1/2EE—x](xE +E2)−1/2

=EyE—ExE+E8(xE+E2)1/2(xE+E2)−1/2E =E yE—ExE+E8.

AnE intervalE ofE definitionE forE theE solutionE ofE theE differentialE equationE isE (—
2,E∞)E becauseE yjE isE notE definedE atE xE =E —2.
18. SinceEtanExEisEnotEdefinedEforExE =E π/2E +E nπ,EnE anEinteger,EtheEdomainEofEyEE =E 5EtanE5xEis
{xEE 5xE/
=Eπ/2E+Enπ}
=Eπ/10E+Enπ/5}.EFromEyE j=E25EsecE25xEweEhave
orE{xEE xE/
jE
y =E25(1E+Etan2E 5x)E=E25E+E25Etan2E 5xE=E25E+Ey 2 .

AnEintervalEofEdefinitionEforEtheEsolution EofEtheEdifferentialEequation EisE(—
π/10,Eπ/10).EAn-E otherEintervalEisE(π/10,E3π/10),E andEsoEon.
19. TheEdomainE ofE theE functionEisE {xEEE 4E — /
=E 0}EorE{x xE /=E —2EorExE /=E 2}.EFromEy jE =
Ex
2

2x/(4E —Ex2)2E weE have 1 2
=E 2xy2.
yjEE=E 2x 4E—Ex
2


AnE intervalE ofE definitionE forE theE solutionE ofE theE differentialE equationE isE (—
2,E2).E OtherE inter-E valsE areE (—∞,E —2)E andE (2,E ∞).E

20. TheEfunctionEisE yE =E 1 1E—EsinExE,E whoseE domainEisE obtainedE fromE 1E —EsinExE /=E 0E orE sinExE /=E 1.
/
=E π/2E+E2nπ}.EFromEyE j=E—E2(11E—EsinEx)E −3/2E (—EcosEx)EweEhave
Thus,EtheEdomainEisE{xEE xE/

2yjE =E(1E—EsinEx)−3/2EcosExE=E[(1E—EsinEx)−1/2]3EcosExE=Ey3EcosEx.

AnE intervalE ofE definitionE forE theE solutionE ofE theE differentialE equationE isE (π/2,E5π/2).E Anoth
erE oneE isE (5π/2,E 9π/2),E andE so E on.

2

, SolutionEandEAnswerEGuide:EZill,EDIFFERENTIALEEQUATIONSEWithEMODELINGEAPPLICATIONSE2024,E9780357760192;EChapte
rE#1:
IntroductionE toE DifferentialE Equations



21. WritingEln(2XE —E 1)E —E ln(XE —E 1)EE=EE tEandEdifferentiating x

implicitlyE weE obtain 4


— =E 1 2
2XE—E1E dt XE—E1E dt
t
2 1 dXEE
— =E 1 –E4 –2 2 4
2XE—E1 XE—E1 dt
–2


–E4
dX
=E—(2XE—E1)(XE—E1)E=E(XE—E1)(1E—E2X).
dtE
Exponentiating E bothE sidesE ofE theE implicitE solutionE we E obta
in

2XE—
E1E XE
=EetE
—E1
2XE—E1E=EXetE —Eet

(etE—E1)E=E(etE—E2)X
et 1
XE = E .
etE —E2E
SolvingEetE —E2E =E 0Ewe EgetEtE =E lnE2.E Thus,EtheE solutionEisEdefinedEonE(—
∞,ElnE2)EorEonE(lnE2,E∞).E TheE graphE ofE theE solutionE definedE onE (—
∞,ElnE2)EisE dashed,E andE theE graphE ofE theE solutionE definedE onE (lnE 2,E ∞)E isE solid.

22. ImplicitlyE differentiating E theE solution,E weE obtain y

2EE dy dy 4

—2xEE —E4xyE+E2yE =E0
dxE dxE 2
—x2E dyE—E2xyEdxE+EyEdyE=E0
x
2xyEdxE+E(x2E —Ey)dyE=E0. –E4 –2 2 4

–2
UsingEtheEquadraticE formulaEtoEsolveEy2EE —E 2x2yE —E 1EE=EE0
√E √E
forEy,Ewe EgetEyE = 4x 4E +E4EE /2E =E x x4E+E1E.
2 ± –
2x2EEE E4
±
√E
Thus,EtwoEexplicitEsolutionsEareEy1EE =E x2 x4E +E1E and
E
+
√EE
y2EE =E x2EE— x4E +E 1E.E BothE solutionsE areE definedE onE (—∞,E∞).

3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
EliteScholars Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
39
Member since
1 year
Number of followers
6
Documents
998
Last sold
3 weeks ago
ACADEMIC HALL STORE!!!!

As a scholar you need a trusted source for your study materials and thats where we come in. Here you get TOP QUALITY; TESTBANKS, SOLUTION MANUALS, EXAMS & OTHER STUDY MATERIALS!!!!!! 100% GUARANTEED Success When you purchase our documents, Please leave reviews so we can meet up to your satisfaction .''At academic hall store'' your good grades is our top priority!!!

4.9

235 reviews

5
230
4
2
3
1
2
0
1
2

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions