100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Statistiek om mee te werken - 10e druk - H3 t/m 7

Rating
4.0
(1)
Sold
19
Pages
31
Uploaded on
06-06-2020
Written in
2019/2020

Dit document is een samenvatting van hoofdstuk 3 t/m 7 uit het boek Statistiek om mee te werken, geschreven door Buijs, A. Niet elk hoofdstuk is volledig samengevat. Zoals in de inhoudsopgave ook te zien is bestaat de samenvatting uit §3.1, §3.2, §3.3, §3 .2, §4.1 t/m §4.5, §5.1 t/m §5.5, §6.1, §6.2, §6.3, §6 .1 t/m §6 .3 en §7.1 t/m §7.3. Alle leerstof voor het tentamen kansrekening (Tweedegraads Lerarenopleiding, Windesheim) is behandeld!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
H3 tm h7
Uploaded on
June 6, 2020
Number of pages
31
Written in
2019/2020
Type
Summary

Subjects

Content preview

KANSREKENING SAMENVATTING




Auteur: Arie Buijs

10e druk (2017)

Samenvatting hoofdstuk 3, 4, 5, 6 en 7 (niet alle paragrafen)

, INHOUDSOPGAVE

Hoofdstuk 3 – Kansrekening........................................................................................................................ 3
3.1 – Volgordeproblemen ..................................................................................................................................... 3
3.2 – Inleiding kansrekening................................................................................................................................. 4
3.3 – Werken met voorwaardelijke kansen.......................................................................................................... 7
3+.2 – De hypergeometrische verdeling ............................................................................................................... 8

Hoofdstuk 4 - Kansvariabelen.................................................................................................................... 10
4.1 – Kansvariabelen: twee soorten ................................................................................................................... 10
4.2 – Kansfunctie en verdelingsfunctie............................................................................................................... 10
4.3 – Verwachtingswaarde en variantie ............................................................................................................ 11
4.4 – Enkele eigenschappen van verwachting en variantie ............................................................................... 12
4.5 – Optelling van variabelen ........................................................................................................................... 13

Hoofdstuk 5 – Normale verdeling .............................................................................................................. 15
5.1 – Kansrekening met de normale verdeling ................................................................................................... 15
5.2 – Willekeurige normale verdelingen ............................................................................................................ 17
5.3 – Optellen en middelen ................................................................................................................................ 19
5.4 – De normale verdeling in de praktijk .......................................................................................................... 20
5.5 – Passingsproblemen.................................................................................................................................... 20

Hoofdstuk 6 – Binomiale vereling .............................................................................................................. 22
6.1 – Berekenen van binomiale kansen .............................................................................................................. 22
6.2 – Verwachting en variantie .......................................................................................................................... 24
6.3 – De normale benadering ............................................................................................................................. 24
6+ - Enkele aanvullende onderwerpen ................................................................................................................ 26

Hoofdstuk 7 – Poissonverdeling ................................................................................................................ 28
7.1 – Poissonverdeling: enkele basisbegrippen .................................................................................................. 28
7.2 – Benadering met behulp van de normale verdeling ................................................................................... 30
7.3 – Toepassing bij de binomiale verdeling ...................................................................................................... 30




2

, HOOFDSTUK 3 – KANSREKENING

3.1 – VOLGORDEPROBLEMEN

Volgordeproblemen zijn problemen waarmee wordt onderzocht in hoeveel volgorden bepaalde
resultaten in een experiment tot stand kunnen komen.

Permutaties
Algemeen geldt dat n elementen op 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ … ∙ 𝑛. We schrijven dit ook wel als n!. Om
rekentechnische redenen definiëren wel 0! = 1.

Permutaties worden ook wel plaatsverwisselingen genoemd. De volgorde maakt hierbij wel uit,
herhaling is niet mogelijk en we gebruiken de hele groep.

Voorbeeld:
Op hoeveel manieren kan je vier personen (A, B, C en D) naast elkaar zetten?

ABCD BACD CABD DABC
ABDC BADC CADB DACB
ACBD BCAD CBAD DBAC
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
ADCB BDCA CDBA DCBA
Dit zijn 24 mogelijkheden.

Als je dit per plaats bekijkt, dan heb je voor de eerste plaats 4 mogelijkheden, voor de tweede plaats
nog 3 mogelijkheden, voor de derde plaats nog 2 mogelijkheden en voor de vierde plaats nog 1. Dus:
4 ∙ 3 ∙ 2 ∙ 1 = 4! = 24.

Variaties
Algemeen geldt een selectie van k elementen uit n. Om dit te berekenen gebruiken we de formule
𝑛!
(𝑛−𝑘)!
.

Bij variaties maakt de volgorde wel uit, herhaling is niet mogelijk en het gaat niet om de hele groep
maar een selectie daarvan.

Voorbeeld:
Op hoeveel manieren kan je vier personen (A, B, C en D) uit een groep van tien personen naast elkaar
zetten?

10! 10∙9∙8∙7∙6∙5∙4∙3∙2∙1
= = 10 ∙ 9 ∙ 8 ∙ 7. Als je dit per plaats bekijkt, dan heb je voor de eerste
(10−4)! 6∙5∙4∙3∙2∙1
plaats 10 mogelijkheden, daarna nog 9, daarna nog 8 en ten slotte nog 7 mogelijkheden.

Wanneer er per plaats een bepaalde eigenschap aan vast hangt, spreken we over het aantal variaties.
Het is dan van belang wie als eerste wordt gekozen, wie als tweede, etc. Is het verschil tussen de
eerste en vierde plek verder niet van belang (je wil gewoon een groep van vier), dan hebben we het
over combinaties.




3

, Combinaties
𝑛!
Algemeen geldt een loting van k elementen uit n. We gebruiken hiervoor de formule
(𝑛−𝑘)!𝑘!
. We
𝑛
noteren dit ook wel als ( ). Dit wordt een binomiaalcoëfficiënt genoemd.
𝑘

Bij combinaties maakt de volgorde niet uit, herhaling is niet mogelijk en het gaat niet om de hele
groep maar een selectie daarvan.

Voorbeeld:
Op hoeveel manieren kan ik een team van vier personen vormen uit een groep van tien?

10! 10∙9∙8∙7∙6∙5∙4∙3∙2∙1 10∙9∙8∙7 10
= = =( ) = 210.
(10−4)!4! 6∙5∙4∙3∙2∙1∙4∙3∙2∙1 4! 4
Hierbij tellen we dus alle groepen die minstens één element verschillen. Het maakt niet uit of je als
eerste, als tweede, als derde, etc. wordt gekozen. Eigenlijk is dit gebaseerd op een variatie, maar
delen we het nog door het aantal mogelijke permutaties.

Groepen na teruglegging
We spreken van loten met terugleggen wanneer een element dat gekozen is nóg een keer opnieuw
kan verschijnen. Dit berekenen we met 𝑛𝑘 = 𝑛 ∙ 𝑛 ∙ 𝑛 ∙ 𝑛 ∙ 𝑛 ∙ … ∙ 𝑛.

Voorbeeld:
Banken overwegen een 5-cijferige pincode. Hoeveel mogelijkheden zijn er als cijfers opnieuw gebruikt
mogen worden?
10 ∙ 10 ∙ 10 ∙ 10 ∙ 10 = 105 = 100.000.

In Nederland zijn nummerborden met: twee cijfers – drie letters – één cijfer. A, E, I, O en U zijn niet
toegestaan. Wat is het aantal mogelijkheden nummerborden?
10 ∙ 10 ∙ 21 ∙ 21 ∙ 21 ∙ 10 = 9.261.000.


Samengevat:
Hele groep? Volgorde? Formule
Permutaties Ja Ja 𝑛!

Variaties Nee Ja 𝑛!
(𝑛 − 𝑘)!

Combinaties Nee Nee 𝑛 𝑛!
( )=
𝑘 (𝑛 − 𝑘)! 𝑘!




3.2 – INLEIDING KANSREKENING

Kansdefinities
Kansrekening kan ons helpen om uitspraken te doen over het optreden van bepaalde uitkomsten, die
een onzekerheid met zich meedragen. Het ’symbool’ P geeft de kans op een gebeurtenis aan.




4

Reviews from verified buyers

Showing all reviews
5 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
cdenhollander Hogeschool Windesheim
Follow You need to be logged in order to follow users or courses
Sold
597
Member since
8 year
Number of followers
526
Documents
32
Last sold
1 day ago

Hoi, ik ben Chantal en ik zit nu in het eerste jaar van de studie tweedegraads Lerarenopleiding wiskunde op Windesheim, te Zwolle. Hiervoor heb ik bijna anderhalf jaar Bedrijfskunde gestudeerd aan de HU. Hiervoor heb ik bijna elk vak samengevat en er komen mogelijk nog meer samenvattingen aan.

3.9

153 reviews

5
35
4
82
3
27
2
3
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions