Elasticity: Theory, Applications and Numerics
Fourth Edition
By
Martin H. Sadd
Professor Emeritus
Department of Mechanical Engineering
University of Rhode Island
Kingston, Rhode Island
Foreword
Exercises found at the end of each chapter are an important ingredient of the text as they
provide homework for student engagement, problems for examinations, and can be used
in class to illustrate other features of the subject matter. This Solutions Manual is
intended to aid the instructors in their own particular use of the exercises. Review of the
solutions should help determine which problems would best serve the goals of
homework, exams or be used in class. As a courtesy to instructors who feel that students
should work homework exercises on their own, we ask instructors not to electronically
post or distribute entire solutions.
The author is committed to continual improvement of engineering education and
welcomes feedback from users of the text and solutions manual. Please feel free to send
comments concerning suggested improvements or corrections to .
Such feedback will be shared with the text user community via the publisher’s web site.
Martin H. Sadd
March 2020
,1.1.
(a) aii a11 a 22 a33 1 4 1 6 (scalar)
aij aij a11 a11 a12 a12 a13 a13 a 21 a 21 a 22 a 22 a 23 a 23 a31 a31 a32 a32 a33 a33
1 1 1 0 16 4 0 1 1 25 (scalar)
1 1 1 1 1 1 1 6 4
aij a jk 0 4 2 0 4 2
0 18 10
(matrix)
0 1 1
0 1 1 0 5 3
3
4
aij b j ai1b1 ai 2 b2 ai 3 b3 (vector)
2
aij bi b j a11b1b1 a12 b1b2 a13 b1b3 a 21b2 b1 a 22 b2 b2 a 23 b2 b3 a31b3 b1 a32 b3 b2 a33 b3 b3
1 0 2 0 0 0 0 0 4 7 (scalar)
b1b1
b1b2 b1b3 1 0 2
bi b j
b2 b1 b2 b2
b2 b3 0 0 0 (matrix)
b3 b1
b3 b2 b3 b3 2 0 4
bi bi b1b1 b2 b2 b3 b3 1 0 4 5 (scalar)
(b) aii a11 a22 a33 1 2 2 5 (scalar)
aij aij a11a11 a12 a12 a13 a13 a21a21 a22 a22 a23 a23 a31a31 a32 a32 a33 a33
1 4 0 0 4 1 0 16 4 30 (scalar)
1 2 0 1 2 0
1 6 2
aij a jk 0 2 1
0 2 1 0 8 4
(matrix)
0 4 2
0 4 2
0 16 8
4
3
aij b j ai1b1 ai 2 b2 ai 3b3 (vector)
6
aij bi b j a11b1b1 a12 b1b2 a13b1b3 a21b2 b1 a22 b2 b2 a23b2 b3 a31b3b1 a32 b3b2 a33b3b3
4 4 0 0 2 1 0 4 2 17 (scalar)
b1b1 b1b2
b1b3 4 2 2
bi b j
b2 b1 b2 b2
b2 b3 2 1 1 (matrix)
b3b1 b3b2
b3b3 2 1 1
bi bi b1b1 b2 b2 b3b3 4 1 1 6 (scalar)
, (c) aii a11 a 22 a33 1 0 4 5 (scalar)
aij aij a11a11 a12 a12 a13 a13 a 21a 21 a 22 a 22 a 23 a 23 a31a31 a32 a32 a33 a33
1 1 1 1 0 4 0 1 16 25 (scalar)
1 1 1 1 1 1 2 2 7
aij a jk 1 0 2 1 0 2 1 3 9
(matrix)
0 1 4
0 1 4 1 4 18
2
1
aij b j ai1b1 ai 2 b2 ai 3b3 (vector)
1
aij bi b j a11b1b1 a12 b1b2 a13b1b3 a 21b2 b1 a 22 b2 b2 a 23b2 b3 a31b3b1 a32 b3b2 a33b3b3
1 1 0 1 0 0 0 0 0 3 (scalar)
b1b1 b1b2
b1b3 1 1 0
bi b j
b2 b1 b2 b2
b2 b3 1 1 0 (matrix)
b3b1 b3b2
b3b3 0 0 0
bi bi b1b1 b2 b2 b3b3 1 1 0 2 (scalar)
(d) aii a11 a 22 a33 1 2 0 3 (scalar)
aij aij a11a11 a12 a12 a13 a13 a 21a 21 a 22 a 22 a 23 a 23 a31a31 a32 a32 a33 a33
1 0 0 0 4 1 0 9 0 15 (scalar)
1 0 0 1 0 0 1 0 0
aij a jk 0 2 1 0 2 1 0 7 3
(matrix)
0 3 1
0 3 1 0 9 4
1
0
aij b j ai1b1 ai 2 b2 ai 3b3 (vector)
0
aij bi b j a11b1b1 a12 b1b2 a13b1b3 a 21b2 b1 a 22 b2 b2 a 23b2 b3 a31b3b1 a32 b3b2 a33b3b3
1 0 0 0 0 0 0 0 0 1 (scalar)
b1b1 b1b2
b1b3 1 0 1
bi b j
b2 b1 b2 b2
b2 b3 0 0 0 (matrix)
b3b1 b3b2
b3b3 1 0 1
bi bi b1b1 b2 b2 b3b3 1 0 1 2 (scalar)