and Answers
Bernoulli Trial - ANS--> An experiment in which there are exactly two possible
outcomes
Binomial distribution - ANS--> A random variable X represents the number of
successes observed from the n Bernoulli trials
Binomial Parameters - ANS--> n = number of trials
p = probability of success
q = 1-p
Binomial probability function (f(x)) - ANS-->
E[X] binomial function - ANS--> E[x] = np
var(x) binomial function - ANS--> var(x) = npq
MGF binomial function - ANS-->
Additive property of binomial function - ANS--> Sum of independent binomially
distributed variables each with probability p, has parameters of p and the sum of all n
Negative binomial distribution - ANS--> X is the number of failures before r
successes in a series of independent Bernoulli trials
Negative binomial parameters - ANS--> r = desired number of successes
x = number of failures before r successes
p = probability of success
q = 1-p, probability of failure
, Negative binomial probability density function f(x) - ANS--> f(x) = Pr(X=x) = (r + x -
1)!/x!(r-1)! * p^r * q^x
Expected value of negative binomial distribution E[X] - ANS--> E[X] = rq/p
Variance of negative binomial distribution var(x) - ANS--> var(x) = rq/p^2
Moment generating function negative binomial distribution - ANS--> Mx(t) = ((1 -
qe^t)/p)^-r
Additive property of negative binomial distribution - ANS--> If Xi follows a negative
binomial distribution with parameters ri and p, and they are independent, then the sum
of them follows a negative binomial distribution with parameters as the sum of the ri and
p.
Geometric distribution - ANS--> The number of failures observed from the series of
Bernoulli trials until the first success occurs
Parameters of geometric distribution - ANS--> p = probability of success
q = 1-p
x = number of trials before first success
Probability density function of geometric distribution - ANS--> f(x) = Pr(X=x) = q^x *
p
Probability mass function of geometric distribution - ANS--> F(x) = Pr(X <= x) = 1 -
q^x+1
Expected value of geometric distribution - ANS--> E[x] = q/p
Variance of geometric distribution - ANS--> var(x) = q/p^2
MGF of geometric distribution - ANS--> Mx(t) = ((1 - qe^t)/p)^-1
Additive property of geometric distribution - ANS--> A sum of n independent
geometric distributions with parameter p follows a negative binomial distribution with
parameters r = n and p.