100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete Newest Version

Rating
4.0
(1)
Sold
-
Pages
152
Grade
A+
Uploaded on
28-01-2025
Written in
2024/2025

Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete Newest Version

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Course

Document information

Uploaded on
January 28, 2025
Number of pages
152
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

1


SOLUTION MANUAL FOR A FIRST COURS v v v v v




E IN ABSTRACT ALGEBRA, WITHAPPLIC
v v v v v




ATIONS8TH EDITION BY JOSEPH v
v
v v




J. ROTMAN LATEST 2024
v v v




Exercises for Chapter 1
v v v




1.1 Truevorvfalsevwithvreasons.
(i) Therevisvavlargestvintegervinveveryvnonemptyvsetvofvnegativevinte-
gers.
v

Solution.vTrue.vIfvCv isvavnonemptyvsetvofvnegativevintegers,vthen

−Cv =v {−nv :v nv ∈v Cv}

isvavnonemptyvsetvofvpositivevintegers.vIfv−avisvthevsmallestvelementv
ofv−Cv,vwhichvexistsvbyvthevLeastvIntegervAxiom,vthenv−av≤v−cvf
orvallvcv ∈vC,vsovthatvav ≥vcvforvallvcv ∈vC.
(ii) Therevisvavsequencevofv13vconsecutivevnaturalvnumbersvcontainingv
exactlyv2vprimes.
Solution.vTrue.vThevintegersv48vthroughv60vformvsuchvavsequence;v
onlyv53vandv59varevprimes.
(iii) Therev arev atv leastv twov primesv inv anyv sequencev ofv 7v consecutivev
naturalvnumbers.
Solution.v False.v Thev integersv 48v throughv 54v arev 7v consecutivev
naturalvnumbers,vandvonlyv53visvprime.
(iv) Ofvallvthevsequencesvofvconsecutivevnaturalv numbersvnotvcontainingv
2vprimes,vtherevisvavsequencevofvshortestvlength.
Solution.vTrue.vThevsetvCv consistingvofvthevlengthsvofvsuchv(finite)v
sequencesvisvavnonemptyvsubsetvofvthevnaturalvnumbers.
(v) 79visvavprime.
√v √v
Solution.vTrue.v 79v< 81v =9,vandv79visvnotvdivisiblevbyv2,v3,
5,vorv7.
(vi) Therev existsv av sequencev ofv statementsv S(1),vS(2),v... v withv S(2n)vt
ruevforvallvnv≥v1vandvwithvS(2nv−v1)vfalsevforveveryvnv≥v1.vSoluti
on.vTrue.vDefinevS(2nv−v1)vtovbevthevstatementvnv/=vn,vandvdefinev S(
2n)vtovbevthevstatementvnv =vn.
(vii) Forv allv n ≥v 0,v wev havev nv ≤v Fnv,v wherev Fnv isv thev nthv Fibonacci
number.

,2


Solution.vTrue.v Wev havev 0v =v F0,v 1v =v F1,v 1v=v F2,v andv 2v =vF
3.v Usevthevsecondvformvofvinductionvwithvbasevstepsvnv =v2vandvnv
=v3v(verifyingvthevinductivevstepvwillvshowvwhyvwevchoosevthesev
numbers).v Byvthevinductivevhypothesis,vnv—v2v≤vFn−2v andvnv—
1v Fn≤1.vHence,v2nv 3v Fnv.−Bu≤
tvnv 2nv 3vforval≤lvnv 3,− ≥

asvdesired.
(viii) Ifvmv andvnv arevnaturalvnumbers,vthenv(mn)!= vm!n!.
Solution.v False.v Ifvmv =v2v=vn,vthenv(mn)!= v24vandvm!n!= v4.
1.2 (i) Forvanyvnv ≥v0vandvanyvrv /=v1,vprovevthat
1v+vrv +vrv2v +vrv3v +v·v·v·v +vrnv =v (1v −vrn+1)/(1v −vr).
Solution.v Wevusevinductionvonvnv ≥v 1.v Whenvnv =v 1,v bothvsidesve
qualv1v+vrv.v Forvthev inductivev step,vnotev that
[1v +vrv +vrv2v +vrv3v +v·v·v·v +vrnv]+ v rn+1v =v (1v −vrn+1)/(1v −vr)v +vrn+1
1v −vrn+1v +v(1v −vr)rn+1
=
1v−vr
1v−v rn+2
=v
.
1v−vr
(ii)v Provevthat

1v +v2v +v22v +v·v·v·v +v2nv =v 2n+1v −v1.
Solution.v Thisv isv thev specialv casev ofv thev geometricv seriesv whenvr
v =v2;vhence,vthevsumvisv(1v−v2
n+1)/(1v−v2)v=v2n+1v−v1.vOnevcanval

sovprovevthisvdirectly,vbyvinductionvonvnv ≥v0.
1.3 Show,vforvallvnv≥v1,vthatv10nvleavesvremainderv1vaftervdividingvbyv9.vSolut
ion.v Thisv mayv bev rephrasedv tov sayv thatv therev isv anv integerv qnv withv10nv =v
9qnv+v1.vIfvwevdefinevq1v =v1,vthenv10v=vq1v+v1,vandvsovthevbasevstepvisvtrue.
Forvthevinductivevstep,vtherevisvanvintegervqnvwith

10n+1v =v10v×v10nv =v10(9qnv +v1)
=v90qnv +v10v =v9(10qnv +v1)v+v1.
Definev qn+1v =v10qnv +v1,v whichv isv anv integer.
1.4 Provevthatvifv0v≤vav ≤vb,vthenvanv ≤vbnv forvallvnv ≥v0.
Solution.vBasevstep.va0v =v1v=vb0,vandvsova0v ≤vb0.
Inductivevstep.vThevinductivevhypothesisvis

anv≤vbn.

, 3


Sincevavisvpositive,vTheoremv1.4(i)vgivesvan+1v=vaanv≤vabnv;vsincevbvisvpo
sitive,vTheoremv1.4(i)vnowvgivesvabnv ≤vbbnv =vbn+1.
1.5v Provev thatv 12v +v22v +v·v·v·v +vn2v =v 1v6n(nv +v1)(2nv +v1)v =v 1vn33v +v 1vn22v +v 1vn.6
Solution.vThevproofvis1byvin1vduc1tionvonvnv ≥v1.vWhenvnv =v1,vthevleftvsidevis
1vandvthevrightvsidevis + + =v1.
3 2 6
Forvthevinductivevstep,
[12v +v22v +v··· v +vn2v]+v (nv +v1)2v =v 13vn3v +v 12vnv2v +v 1v6nv +v(nv +v1)2
3 2
=v 1v(nv+v1)v +v1v(nv +v1)v +v1v(nv+v1),
3 2 6
aftervsomevelementaryvalgebraicvmanipulation.
1.6v Provev thatv 13v +v23v +v·v·v·v +vn3v =v 14vn4v +v 1v2n3v +v 1v4n2.
Solution.vBasevstep:vWhenvnv =v1,vbothvsidesvequalv1.
Inductivevstep:

[13v +v23v +v·v·v·v +vnv3v]+v (nv +v1)3v =v 1vn4v +v 1vn3v +v 1vn2v +v(nv +v1)3.
4 2 4
Expandingvgivesv 1vn4v +v 3vn3v +v 13vn2v +v3nv +v 1,
4 2 4
whichvis
4 (nv+v1) +v2 (nv+v1) +v 4 (nv +v1) .
1v 4v 1v 3v 1v 2

1.7v Provev thatv 14v +v24v +v·v·v·v +vn4v=v 1vn55v +v 1vn24v +v 1vn33v −vv1v n.30
Solution.v Thevproofvisvby1indu1ction1vonvn1vv≥v1.v Ifvnv−v1,v thenv thevleftvsidevis
1,vwhilevthevrightvsidevis + + − =v1vasvwell.
5 2 3 30
Forvthevinductivevstep,

14v +v24v +v·v·v·v +vn4v +v(nv +v1)4v =v 1v5n5v +v 1vn24v +v 1vn33v −v 1v 30
nv +v(nv +v1)4.
Itvisvnowvstraightforwardvtovcheckvthatvthisvlastvexpressionvisvequalvto

5v(nv+v1) +v12v(nv+v1) +v13v(nv+v1) −v 130(nv+v1).
1 5v 4v 3v v



1.8 Findvavformulavforv1 +3v+5 +·v·v·+v(2nv−1),vandvusevmathematicalvinductionvt
ovprovevthatvyourvformulavisvcorrect.
Solution.vWevprovevbyvinductionvonvnv ≥v1vthatvthevsumvisvn2.
BasevStep.vWhenvnv=v1,vwevinterpretvthevleftvsidevtovmeanv1.vOfvcourse,v
12v =v1,vandvsovthevbasevstepvisvtrue.
InductivevStep.
1v +v3v +v5v +v·v·v·v +v(2nv −v1)v +v(2nv +v1)
=v 1v +v3v +v5v +v··· v +v(2nv −v 1)]+v (2nv +v1)
=vn2v +v2nv +v1
=v(nv+v1)2.

, 4
.n
1.9 Findv avvformulav forv 1v +v jv!vjv,vvandv usev inductionv tov provevvthatvvyour
j=1
formulavisvcorrect.
Solution.vvAvvlistv ofv thevvsumsv forvvnvv1=
,vv2,vv3,vv4,vv5vvisv 2,vv6,vv24,vv120,vv720.vT
hesevarevfactorials;vbetter,vtheyvarev2v!,v3v!,v4!,v5!,v6!v.vWevhavevbeenvledvtovth
evguess
n
S(n)v:v1v+ jv!vjv=v (nv +v1)!.
jv=1

Wevnowvusevinductionvtovprovevthatvthevguessvisvalwaysvtrue.vThevbasevstepv
S(1)vhasvalreadyvbeenvchecked;vitvisvonvthevlist.vForvthevinductivevstep,vwev
mustvprove
n+1
S(nv +v1)v :v1v+ jv!vjv=v (nv +v2)!.
jv=1

Rewritevthevleftvsidevas
n
1v+ jv!vjv +v(nv+v1)!(nv+v1).
jv=1

Byvthevinductivevhypothesis,vthevbracketedvtermvisv(nv +v1)!,vandvsovthevleftvsid
evequals

(nv +v1)!+v(nv+v1)!(nv+v1)v=v(nv+v1)![1v+v(nv+v1)]
=v(nv+v1)!(nv+v2)
=v(nv+v2)!.

Byvinduction,v S(n)visvtruevforvallvnv ≥v1.
1.10 (M.vBarr)vTherevisvavfamousvanecdotevdescribingvavhospitalvvisitvofvG.vH.v
HardyvtovRamanujan.vHardyvmentionedvthatvthevnumberv1729vofvthevtaxivh
evhadvtakenvtovthevhospitalvwasvnotvanvinterestingvnumber.vRamanujanvdisa
greed,vsayingvthatvitvisvthevsmallestvpositivevintegervthatvcanvbevwrittenvasvth
evsumvofvtwovcubesvinvtwovdifferentvways.
(i) ProvevthatvRamanujan’svstatementvisvtrue.
Solution.vFirst,v1729visvthevsumvofvtwovcubesvinvtwovdifferentvwa
ys:
1729v=v13v +v123; 1927v =v93v +v103.
Second,v nov smallerv numberv nv hasv thisv property.v Ifv nv =va3vv+v b3,
3vvv 3
thenvva,v b≤12.vvItv isv nowv avvmatterv ofv checkingv allv pairsvva+ b vvforvs
uchvav andvb.
$17.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
8 months ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Allstudyyguide Teachme2-tutor
Follow You need to be logged in order to follow users or courses
Sold
11
Member since
10 months
Number of followers
2
Documents
546
Last sold
2 months ago

4.8

729 reviews

5
607
4
82
3
24
2
12
1
4

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions