Finite Mathematics & Its Applications1
m m m m m
3th Edition by Larry J. Goldstein, Chapt
m m m m m m
ers 1 - 12, Complete
m m m m
, Contents
Chapter 1: Linear Equations and Straight Lines
m m m m m 1–1
Chapter 2: Matrices
m 2–1
Chapter 3: Linear Programming, A Geometric Approach
m m m m m 3–1
Chapter 4: The Simplex Method
m m m 4–1
Chapter 5: Sets and Counting
m m m 5–1
Chapter 6: Probability
m 6–1
Chapter 7: Probability and Statistics
m m m 7–1
Chapter 8: Markov Processes
m m 8–1
Chapter 9: The Theory of Games
m m m m 9–1
Chapter 10: The Mathematics of Finance
m m m m 10–1
Chapter 11: Logic
m 11–1
Chapter 12: Difference Equations and Mathematical Models
m m m m m 12–1
, Chapter 1m
Exercisesm1.1 5
6. Leftm1,mdownm
2
1. Rightm2,mupm3 y
y
(2,m 3
) x
x
( )
–1,2m–522
2
7.m Leftm20,mupm40
2. Leftm1,mupm y
4
y
(–20,m 40)
(–1,m 4)
x
x
8.m Rightm25,mupm30
3.m Downm2 y
y
(25,m30)
x
x
(0,m –2)
9. PointmQ2ism2munitsmtomthemleftmandm2munitsm
4. Rightm2
y upmorm(—2,m2).
10. PointmPmism3munitsmtomthemrightmandm2munitsmdo
wnmorm(3,—2).
x
(2,m 0 1m
) 11. —2(1)m+m (3)m =m—2m +1m=m—1som yesm them pointm is
3
onmthemline.
5.m Leftm2,mupm 1
1 12. —2(2)m+m m (6)m =m—1mism false,m som nom them pointm ism not
3
y
onmthemlin
(–2,m 1) e
x
Copyrightm©m2023mPearsonmEducation,mIn 1-1
c.
, Chapter21:mLinearmEquationsmandmStraightmLin ISM:mFinitemMat
es h
1 24.m 0m=m5
13 —2xm+2 ym =m— nomsolution
1m Substitutem them xm andm y
3
. x-
coordinatesmofmthempointmintomthemequatio intercept:mnone
n:
f1mmmm ıh f1 hmmm1
'mmm ,m3mm→ —2ı'+mmm (3)= —1m→ —1+1m= —1mmis
Whenmxm=m0,m ym=m5
y' ı
y-intercept:m(0,m5)
2mmm'mJ ı y2J 3
amfalsemstatement.mSomnomthempointmismnotm 25.mWhenmym=m0,mxm=m7
onmtmheline. x-
fm1h fm1 h intercept:m(7,m0)0
ı ı
1.m4 —2 ' +'m (—1)m=— =m7
1m ism truem som yesm them pointm is nomsolution
'y3 ıJmmmm'y y-intercept:mnone
3ıJmonmtheml 26.m 0m=m–8x
ine. xm=m0
x-intercept:m(0,m0)
15.m mm=m5,mbm=m8 ym=m–8(0)
ym=m0
16.m mm=m–2mandmbm=m–6
y-intercept:m(0,m0)
17.m ym =m0xm+m3;mmm=m0,mb
m =m 3
2 2 1m
ym= 27 0 m =m xm –m1
18 3
xm+m0;m mm=m ,m bm=m0 .
. 3 3 xm=m3
x-intercept:m(3,m0)
19.m 14xm+7mym =m21 1m
ym =m (0)m2–m1
7mym =— 3
14xm +m21 ym=m–1
ym =m—2xm +3 y-intercept:m(0,m–1)
y
20 xm—mym =m3
. —ym =m—xm +3
ym =m xm—3
(3,m 0)
21.m m 3xm =m5 x
5 (0,m –1)
xm=m
3
1 2 28.m Whenmxm=m0,mym=m0.
y2m=m10
22 –xm+2 3 Whenmxm=m1,mym=m2.
. 2m 1m y
ym =m xm+
10
3 2 (1,m 2)
3 x
ym=mmm xm+ (0,m 0)
15
4
1-2 Copyright2©m2023mPearsonmEducation,mIn
c.