100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Full summary math, pre master finance (116 pages)

Rating
3.0
(1)
Sold
3
Pages
116
Uploaded on
22-01-2025
Written in
2023/2024

Full summary math, pre master finance (116 pages)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 22, 2025
Number of pages
116
Written in
2023/2024
Type
Summary

Subjects

Content preview

Inhoudsopgave
Basic math: (chapter 1-3) .............................................................................................................. 3
Basic 1: Logic ..................................................................................................................................3
Properties of power......................................................................................................................3
Rules of algebra ...........................................................................................................................4
Fractions .....................................................................................................................................5
Summations ...............................................................................................................................8
Square roots ............................................................................................................................. 10

Basic 2: Finding critical points: .....................................................................................................11
Solving equations ...................................................................................................................... 11
Solving inequalities .................................................................................................................... 11
Factorization!!!!! ............................................................................................................................ 14
2 equations -> 2 unknowns ............................................................................................................. 15

1. Functions of 1 variable (H4) ..................................................................................................16
Find the domain. ............................................................................................................................ 17
Find the range. (R=Range) ............................................................................................................... 20
Graph of a function ........................................................................................................................ 22
Working with polynomials .............................................................................................................. 24
Cubic function:(EXAM) ............................................................................................................... 24
Rational function: ...................................................................................................................... 26
Factor for polynomials. .............................................................................................................. 27
Polynomials division!!! OPGAVE WEEKLY ASSIGNMENT boven EN MIDTERM onder! ....................... 28
Master the EXP() function !!!, Master the LN Function!!!! (EXAM) ........................................................ 30
Inverse functions! .......................................................................................................................... 33
Know how the standard graphs look like! ......................................................................................... 37

2. Differentiation of a Function F(X) ..........................................................................................38
Definition (EXAM) ........................................................................................................................... 38
Learn from looking at the first interval. ............................................................................................. 40
First derivative & second derivative: (EXAM) ..................................................................................... 42
Quotient rule: ............................................................................................................................ 44
Product rule: F(X)=F(X) X G(X) -> F’X=F’(X) X G(X) + F(X) X G’(X)...................................................... 45
Chain rule: F(x)-F(G(X))-> F’(x)=F’(GX(x)) X G’(X) ........................................................................... 45
Convex or concave? (EXAM) ....................................................................................................... 47
Rules for differentiation .................................................................................................................. 50
EXP(x) and LN (x) ............................................................................................................................ 53
Chain rule ..................................................................................................................................... 54

Limits! .........................................................................................................................................58
Limits at infinity: EXAMEN !!!!!! ........................................................................................................ 59

3. Optimization .......................................................................................................................66



pag. 1

, Single variable optimization: ........................................................................................................... 69
Def min/max .................................................................................................................................. 70
Ness FOC (First order condition) ..................................................................................................... 71
First derivative test (EXAM) ............................................................................................................. 71
Exterme value theorem (EXAM) ....................................................................................................... 74
Definition (EXAM) ....................................................................................................................... 75
Extrema for Concave/Convex functions ........................................................................................... 75
Local extrema ................................................................................................................................ 76
Concave or convex functions .......................................................................................................... 78
Inflection points (EXAM) ................................................................................................................. 81

4. Functions with more variables .............................................................................................82
Find the Domain ............................................................................................................................ 82
Partial Derivatives .......................................................................................................................... 83
Convexity/concavity ....................................................................................................................... 84
Young’s Theorem ........................................................................................................................... 84
Chain rule in 2nd dimension (EXAM) ................................................................................................. 84
Nec. FOC ...................................................................................................................................... 95
Sufficient condition!!!!! ................................................................................................................... 95
Extreme Value Theorem (EXAM) ...................................................................................................... 96
Saddle points (and other) ............................................................................................................... 97

5. Matrices (EXAM) ..................................................................................................................98
Matrix Addition:............................................................................................................................ 103
Matrix multiplication: ................................................................................................................... 104
Identity matrice !!! ........................................................................................................................ 107
Transparant matrice ..................................................................................................................... 108
Inverse matrix -> when ................................................................................................................. 110
2x2 case ...................................................................................................................................... 112




pag. 2

,Basic math: (chapter 1-3)
Basic 1: Logic
➔ Nes condition and sufficient condition

Overige regels:




Properties of power
- To the power of 0 -> Equals 1: -> 1/1=2
- 2x to the power 4: -> 2 to the power 4 and x to the power 4.
-

-

-

-


-




pag. 3

, Rules of algebra
Simpele rekenregels:




Voorbeelden:
Show that : f(x)=F(-x) -> LETTERLIJK doen wat er gevraagd wordt: voorbeeld van miderm:
Show that G(-x) = -g(x) -> G(-x) = -g(x) (formule was 3x^3 – 1/5x^5
- Voor de -g(x) -> zet een – voor de formule
- Voor de g(-x) -> zet een – voor de x en.
- Is nu gelijk.
What does this mean geometrically?
- What does this mean on the graps (= the same so (a,b) and (-a,-b) are on the
graph.
- Just try some point and give answer




Just an easy warm up question.
- 5+3=8, but 4+4 is also 8
- 4x4=16, but -4*-4 is also 16
- Something times 0 or – turns the equation negative so true, other way round not cause x
could be 3, so the y does not make a difference.
- True and True, cause: -2 X -2 X -2 = -8, so x needs to be 2 both ways round.




30 pm vast, 0.16 per minute, Cost=30+0.16x. plug in 102 and 126 on the ends, you
will get both answers.




pag. 4
$7.84
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
DBSTUVIA
3.0
(1)

Reviews from verified buyers

Showing all reviews
9 months ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
DBSTUVIA Haagse Hogeschool
Follow You need to be logged in order to follow users or courses
Sold
6
Member since
6 year
Number of followers
0
Documents
7
Last sold
9 months ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions