SOLUTIONS MANUAL FOR
MICROELECTRONIC CIRCUIT
DESIGN 5TH EDITION JAEGER
,Microelectronic Circuit Design 5th Edition Jaeger Solutions Manual
CHAPTER 2
2.1
Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m-cm, and aluminum is a conductor.
2.2
Based upon Table 2.1, a resistivity of 1015 -cm > 105 -cm, and silicon dioxide is an insulator.
2.3
2.4
L 1.8 2 cm
( a) R = r = ( 2.82x10 -6 W - cm) = 144 W
A ( 5x10 cm) (1x10 -4 cm)
-4
L 1.8 2 cm
( b) R = r = ( 2.82x10-6 W - cm ) = 287 W
A ( 5x10 cm) ( 0.5x10 -4 cm)
-4
2.5
L 1.8 2 cm
( a) R = r = (1.66x10-6 W - cm ) = 94.5 W
A ( 5x10 cm) (1x10 -4 cm)
-4
L 1.8 2 cm
( b) R = r = (1.66x10 -6 W - cm) = 169 W
A ( 5x10 cm) ( 0.5x10 -4 cm)
-4
2.6
æ E ö
ni2 = BT 3 exp ç - G ÷ B=1.08x1031
è kT ø
æ ö
(10 )
2 1.12
= 1.08x1031 T 3 exp ç -
10
-5 ÷
è 8.62x10 T ø
Using a spreadsheet, solver, or MATLAB yields T=305.23K
Define an M-File:
function f=temp(T)
f=1e20-1.08e31*T^3*exp(-1.12/(8.62e-5*T));
Then: fzero('temp',300) | ans = 305.226 K
2-1 ©R. C. Jaeger & T. N. Blalock 3/23/15
Visit TestBankDeal.com to get complete for all chapters
, 2.7
31
For silicon, B = 1.08 x 10 and EG = 1.12 eV:
-19 3 9 3 13 3
ni = 5.07 x10 /cm 6.73 x10 /cm 1.69 x 10 /cm .
30
For germanium, B = 2.31 x 10 and EG = 0.66 eV:
-4 3 13 3 15 3
ni = 2.63 x10 /cm 2.27 x10 /cm 2.93 x 10 /cm .
2.8
(a) Define an M-File:
function f=temp(T)
ni=1E15;
f=ni^2-1.08e31*T^3*exp(-1.12/(8.62e-5*T));
15
ni = 10 /cm3 for T = 602 K
(10 )15 2
+ 4 (1015 )
2
1015 +
( b) N D = 1015 cm3 , ni2 = 1015 cm 3 : n = = 1.62x1015 / cm 3
2
n2
10 30
p= i
= = 6.18x1014 / cm 3
n 1.62x10 15
( c) At room temperature, N D >> ni2 .
ni2 10 20
\n = N D = 1015 electrons / cm 3 and p = = 15 = 10 5 holes / cm 3
n 10
2.9
6 3
T = 300 K and EG = 1.42 eV: ni = 2.21 x10 /cm
3 10 3
T = 100 K: ni = 6.03 x 10-19/cm T = 450 K: ni = 3.82 x10 /cm
6 3
T = 300 K and EG = 1.42 eV: ni = 2.21 x10 /cm
3 10 3
T = 100 K: ni = 6.03 x 10-19/cm T = 450 K: ni = 3.82 x10 /cm
2-2 ©R. C. Jaeger & T. N. Blalock 3/23/15
MICROELECTRONIC CIRCUIT
DESIGN 5TH EDITION JAEGER
,Microelectronic Circuit Design 5th Edition Jaeger Solutions Manual
CHAPTER 2
2.1
Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m-cm, and aluminum is a conductor.
2.2
Based upon Table 2.1, a resistivity of 1015 -cm > 105 -cm, and silicon dioxide is an insulator.
2.3
2.4
L 1.8 2 cm
( a) R = r = ( 2.82x10 -6 W - cm) = 144 W
A ( 5x10 cm) (1x10 -4 cm)
-4
L 1.8 2 cm
( b) R = r = ( 2.82x10-6 W - cm ) = 287 W
A ( 5x10 cm) ( 0.5x10 -4 cm)
-4
2.5
L 1.8 2 cm
( a) R = r = (1.66x10-6 W - cm ) = 94.5 W
A ( 5x10 cm) (1x10 -4 cm)
-4
L 1.8 2 cm
( b) R = r = (1.66x10 -6 W - cm) = 169 W
A ( 5x10 cm) ( 0.5x10 -4 cm)
-4
2.6
æ E ö
ni2 = BT 3 exp ç - G ÷ B=1.08x1031
è kT ø
æ ö
(10 )
2 1.12
= 1.08x1031 T 3 exp ç -
10
-5 ÷
è 8.62x10 T ø
Using a spreadsheet, solver, or MATLAB yields T=305.23K
Define an M-File:
function f=temp(T)
f=1e20-1.08e31*T^3*exp(-1.12/(8.62e-5*T));
Then: fzero('temp',300) | ans = 305.226 K
2-1 ©R. C. Jaeger & T. N. Blalock 3/23/15
Visit TestBankDeal.com to get complete for all chapters
, 2.7
31
For silicon, B = 1.08 x 10 and EG = 1.12 eV:
-19 3 9 3 13 3
ni = 5.07 x10 /cm 6.73 x10 /cm 1.69 x 10 /cm .
30
For germanium, B = 2.31 x 10 and EG = 0.66 eV:
-4 3 13 3 15 3
ni = 2.63 x10 /cm 2.27 x10 /cm 2.93 x 10 /cm .
2.8
(a) Define an M-File:
function f=temp(T)
ni=1E15;
f=ni^2-1.08e31*T^3*exp(-1.12/(8.62e-5*T));
15
ni = 10 /cm3 for T = 602 K
(10 )15 2
+ 4 (1015 )
2
1015 +
( b) N D = 1015 cm3 , ni2 = 1015 cm 3 : n = = 1.62x1015 / cm 3
2
n2
10 30
p= i
= = 6.18x1014 / cm 3
n 1.62x10 15
( c) At room temperature, N D >> ni2 .
ni2 10 20
\n = N D = 1015 electrons / cm 3 and p = = 15 = 10 5 holes / cm 3
n 10
2.9
6 3
T = 300 K and EG = 1.42 eV: ni = 2.21 x10 /cm
3 10 3
T = 100 K: ni = 6.03 x 10-19/cm T = 450 K: ni = 3.82 x10 /cm
6 3
T = 300 K and EG = 1.42 eV: ni = 2.21 x10 /cm
3 10 3
T = 100 K: ni = 6.03 x 10-19/cm T = 450 K: ni = 3.82 x10 /cm
2-2 ©R. C. Jaeger & T. N. Blalock 3/23/15