11
.
a .
Mx (t) ECeTX)
·
=
↑ (1 1)
g3x
-
=
-
1) -
+
xdo
-
y
S
=
fiedx
S
x
Fx(x) e id - e
fx(x)
- -
=
e =) = e .
x
- ex
-l -x
e
e
b
S
-
x
+ x)
:
Mx(+ ) - x - e
da
= b
& ·
e e
l+ u= e du = -e
as >( -) -
=-So
u> 0-
it i du as x+ -
- 1
-
go A
ite"du
r(1 2)
= -
(Probabiliz integral transform)
b: We know : Fx (X) -
U(0 1) ,
* >
-
U(p ,
= ) > NCo
-
,
= ] >
-
N(E,)
=
Fx(X) + I (U) 5(E ) + 1
·: (E (e- eX(j + 1 =
g(X)
, 12
.a
fa
.
y 1)
Fx(x) ds
-
-
=
e
1
=
e . (- e-S)))
)
=
= e( ex -
+ e
x+
1
1
+
-
=
-
( -
7)
1
-
= -
e
12 .
.
6 Y : = X [15 , - (a)
:
Fy(y) =
P(y = y)
=
P(y = y , X =5) +
p(yy X] ,
=
P(5 = X = y) [25 ,
0, (b) + P(b =
y X<5) It
, ,
?
a
)
if y<s
[Ex(5)
=
if a 325 since [Y 13 =
15X153
=
[x(53
Fx(y)
-
Ex(5) + Fx (5) if y=5
-
if y<
Lie
=
if D =y
< 5
1- 1)
if
-
y25y
.
a .
Mx (t) ECeTX)
·
=
↑ (1 1)
g3x
-
=
-
1) -
+
xdo
-
y
S
=
fiedx
S
x
Fx(x) e id - e
fx(x)
- -
=
e =) = e .
x
- ex
-l -x
e
e
b
S
-
x
+ x)
:
Mx(+ ) - x - e
da
= b
& ·
e e
l+ u= e du = -e
as >( -) -
=-So
u> 0-
it i du as x+ -
- 1
-
go A
ite"du
r(1 2)
= -
(Probabiliz integral transform)
b: We know : Fx (X) -
U(0 1) ,
* >
-
U(p ,
= ) > NCo
-
,
= ] >
-
N(E,)
=
Fx(X) + I (U) 5(E ) + 1
·: (E (e- eX(j + 1 =
g(X)
, 12
.a
fa
.
y 1)
Fx(x) ds
-
-
=
e
1
=
e . (- e-S)))
)
=
= e( ex -
+ e
x+
1
1
+
-
=
-
( -
7)
1
-
= -
e
12 .
.
6 Y : = X [15 , - (a)
:
Fy(y) =
P(y = y)
=
P(y = y , X =5) +
p(yy X] ,
=
P(5 = X = y) [25 ,
0, (b) + P(b =
y X<5) It
, ,
?
a
)
if y<s
[Ex(5)
=
if a 325 since [Y 13 =
15X153
=
[x(53
Fx(y)
-
Ex(5) + Fx (5) if y=5
-
if y<
Lie
=
if D =y
< 5
1- 1)
if
-
y25y