SV pharmaceutical manufacturing techniques 2024 – 2025
Inhoudsopgave
1 Solid Phase Peptide Synthesis ............................................................................................... 3
1.1 Combinatorial chemistry ....................................................................................................... 3
1.1.1 Combinatorial libraries ................................................................................................... 3
1.2 High throughput synthesis ..................................................................................................... 9
1.2.1 Solid phase synthesis ..................................................................................................... 9
1.2.2 Solid phase synthesis vs. synthesis in solution .............................................................. 26
2 Nanotechnological Formulation of Poorly Water-Soluble Drug Molecules............................... 27
2.1 Nanotechnology in Pharmaceutical Industry .........................................................................27
2.1.1 Introduction ................................................................................................................. 27
2.1.2 Poorly Soluble API’s require new techniques… .............................................................. 28
2.1.3 Block Copolymer Micelles ............................................................................................ 30
2.1.4 Nano Emulsions ........................................................................................................... 30
2.2 Nanosuspensions ................................................................................................................32
2.2.1 Introduction ................................................................................................................. 32
2.2.2 Examples of Nanosuspensions ..................................................................................... 33
2.2.3 Producing nanosuspensions ......................................................................................... 34
2.3 Downstream Processing of Nanosuspensions .......................................................................37
2.3.1 Nanosuspensions into solid dosage forms .................................................................... 37
2.4 Case study ..........................................................................................................................42
2.4.1 Doxil ............................................................................................................................ 42
2.4.2 Cripec.......................................................................................................................... 43
3 Continuous Production, QbD, PAT ......................................................................................... 46
3.1 Introduction .........................................................................................................................46
3.1.1 Continuous manufacturing ........................................................................................... 46
3.1.2 PAT .............................................................................................................................. 47
3.1.3 QbD ............................................................................................................................. 48
3.2 Pharmaceutical applications ................................................................................................49
3.3 Hot melt extrusion ...............................................................................................................50
3.3.1 Introduction ................................................................................................................. 50
3.3.2 Solid dispersions .......................................................................................................... 51
3.3.3 CMA’s and CPP’s for hot melt extrusion......................................................................... 52
3.3.4 Downstream processing ............................................................................................... 54
3.3.5 PAT in hot melt extrusion .............................................................................................. 54
3.4 Continuous wet granulation: twin screw granulation ..............................................................54
3.4.1 Introduction ................................................................................................................. 54
3.4.2 Screw based granulation .............................................................................................. 55
3.4.3 PAT during wet granulation............................................................................................ 55
3.4.4 Granule Size Distribution (GSD) as a CQA ...................................................................... 55
3.4.5 Friability as a CQA ........................................................................................................ 57
3.4.6 PAT in wet granulation .................................................................................................. 57
4 Process Chemistry and API Manufacturing ............................................................................ 58
4.1 Need for process chemistry ..................................................................................................58
4.2 Process chemistry ...............................................................................................................58
4.2.1 Process chemistry ¹ medicinal chemistry ...................................................................... 58
4.2.2 API production cost ...................................................................................................... 59
,SV pharmaceutical manufacturing techniques 2024 – 2025
4.2.3 ICH guidelines on process equipment ........................................................................... 59
4.3 Reaction engineering and catalysis .......................................................................................60
4.3.1 Reaction engineering .................................................................................................... 60
4.4 Chemical reactor engineering ...............................................................................................62
4.4.1 Reactor engineering ..................................................................................................... 62
4.5 API separation and purification .............................................................................................64
4.5.1 API separation .............................................................................................................. 64
4.5.2 API purification............................................................................................................. 65
4.6 Click chemistry and biorthogonal chemistry ..........................................................................68
4.6.1 Click chemistry ............................................................................................................ 68
4.6.2 Biorthogonal chemistry................................................................................................. 69
5 3D Printing & Electrospinning ................................................................................................ 70
5.1 3D-printing ..........................................................................................................................70
5.1.1 What is 3D printing? ..................................................................................................... 70
5.1.2 3D printing technologies ............................................................................................... 71
5.1.3 Other biomedical applications of 3D printing ................................................................. 74
5.2 Electrospinning ....................................................................................................................74
5.2.1 What is electrospinning? .............................................................................................. 74
5.2.2 Parameters & variables ................................................................................................. 75
5.2.3 Porous fibers ................................................................................................................ 77
5.2.4 Drug delivery ................................................................................................................ 77
5.2.5 Tissue engineering ........................................................................................................ 78
5.3 Electrospraying ....................................................................................................................78
5.3.1 What is electrospraying? .............................................................................................. 78
5.4 Case study ..........................................................................................................................79
5.4.1 Flubendazole ............................................................................................................... 79
6 mRNA Lipid Nanoparticle Formulation .................................................................................. 80
6.1 mRNA LNP formulation characterization and activity testing ..................................................80
6.1.1 Dynamic light scattering (DLS) & field flow fractionation: techniques to measure particle
size 80
6.1.2 Electrophoretic mobility ............................................................................................... 83
6.1.3 Flow cytometry............................................................................................................. 84
6.1.4 Reporter proteins ......................................................................................................... 86
6.2 Microfluidic production ........................................................................................................87
6.2.1 What is microfluidics? .................................................................................................. 87
6.2.2 Microfluidic chips and devices ...................................................................................... 87
6.2.3 Microfluidic flow........................................................................................................... 87
6.2.4 Microfluidic emulsification ........................................................................................... 87
6.2.5 Microfluidic nanoprecipitation ...................................................................................... 89
6.3 mRNA LNP vaccines ............................................................................................................90
6.3.1 virus vector DNA and mRNA vaccines............................................................................ 90
6.3.2 mRNA LNP formulation ................................................................................................. 90
,SV pharmaceutical manufacturing techniques 2024 – 2025
1 Solid Phase Peptide Synthesis
Classical organic synthesis in solution
- Most cases: reagent A + reagent B à product AB
ð Classic method for conventional (simple) compounds
ð Possible through applying specific reactions and conditions: temperature, time, ratio,
solvent, catalyst, base…
- Complexity: chemists could make up to 100 compounds a year, however this was too little
when high throughput screening became a hot topic
ð Therefore, we needed high throughput synthesis!
Principle: synthesis of multiple different compounds at the same time.
ð Simultaneous preparation of a library (a.k.a. different compounds) at once, under
identical conditions.
« classical synthesis provides us with one compound at a time
Classical chemistry Combinatorial chemistry
Starting materials: Starting materials:
Reagent A i reagents A
Reagent B n reagents B
Reaction: A + B ® AB Reactions: A1 + B1 ® A1B1…
…Ai + Bn ® AiBn
Output: 1 product Output: i*n products
1.1.1 Combinatorial libraries
1.1.1.1 types of combinatorial libraries
Scaffold-based: libraries where the scaffold or core structure is always the same, only the “R”-
groups differ.
e.g. Passerini three-component reaction
Scaffold: the core structure or framework of a molecule, around which other chemical groups are
added.
ð This central framework is often responsible for the biological activity
ð Scaffold is like the “skeleton” on which functional groups or side chains “clothing” are
added.
Backbone-based: libraries where the compounds are related by a common backbone, which
always repeats itself.
e.g. Oligopeptides made from 20 different amino acids.
Backbone: the entire structure of a molecule, including both the scaffold and the attached
functional groups.
ð Considers the full molecule as a whole
, SV pharmaceutical manufacturing techniques 2024 – 2025
ð Allows the exploration of different complete molecular structures.
ð Backbone is more like “the entire outfit”
ð Different molecules with varying overall structures are included in the library, not just
variations around a common core.
Key Difference
- Focus: Scaffold-based libraries focus on a shared central framework with varying side
groups, while backbone-based libraries focus on complete, diverse molecular structures.
- Purpose: Scaffold-based libraries are used to systematically explore variations around a
common core, while backbone-based libraries are broader, aiming to maximize chemical
diversity.
1.1.1.2 size of combinatorial libraries
Few 10’s – 100’s – 1000’s of compounds
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠
= (# 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑠 𝑢𝑠𝑒𝑑 𝑝𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝)!"#$%& () &%*+,-(! .,%/.01
1.1.1.3 requirements
! Large collection of reactive, small and structurally different building blocks
! Synthesis:
o Fast
o Reproduceable
o Reliable
1.1.1.4 synthesis methods
Parallel synthesis: where multiple compounds are synthesized simultaneously in separate
reactions.
Split synthesis: where a single pool of reactants is split, reacted, and recombined iteratively1 to
generate a diverse library of compounds.
1.1.1.4.1 PARALLEL SYNTHESIS
“The easiest library synthesis.”
ð Each reaction vessel contains an individual reaction/individual compound.
ð Binding and activity screening is possible in solution and on-bead.
ð Automation is possible
Total individual reactions = number of end products * reaction steps
Number of end products = (number of reactions)^(number of building blocks in every step)
Step 1: well with solid support in each reaction vessel.
¢: solid support
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Step 2: couple A, B and C to the solid support
¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A
1
Repeating cycles of splitting, reacting, and recombining multiple times to systematically build a diverse
library of compounds.
Inhoudsopgave
1 Solid Phase Peptide Synthesis ............................................................................................... 3
1.1 Combinatorial chemistry ....................................................................................................... 3
1.1.1 Combinatorial libraries ................................................................................................... 3
1.2 High throughput synthesis ..................................................................................................... 9
1.2.1 Solid phase synthesis ..................................................................................................... 9
1.2.2 Solid phase synthesis vs. synthesis in solution .............................................................. 26
2 Nanotechnological Formulation of Poorly Water-Soluble Drug Molecules............................... 27
2.1 Nanotechnology in Pharmaceutical Industry .........................................................................27
2.1.1 Introduction ................................................................................................................. 27
2.1.2 Poorly Soluble API’s require new techniques… .............................................................. 28
2.1.3 Block Copolymer Micelles ............................................................................................ 30
2.1.4 Nano Emulsions ........................................................................................................... 30
2.2 Nanosuspensions ................................................................................................................32
2.2.1 Introduction ................................................................................................................. 32
2.2.2 Examples of Nanosuspensions ..................................................................................... 33
2.2.3 Producing nanosuspensions ......................................................................................... 34
2.3 Downstream Processing of Nanosuspensions .......................................................................37
2.3.1 Nanosuspensions into solid dosage forms .................................................................... 37
2.4 Case study ..........................................................................................................................42
2.4.1 Doxil ............................................................................................................................ 42
2.4.2 Cripec.......................................................................................................................... 43
3 Continuous Production, QbD, PAT ......................................................................................... 46
3.1 Introduction .........................................................................................................................46
3.1.1 Continuous manufacturing ........................................................................................... 46
3.1.2 PAT .............................................................................................................................. 47
3.1.3 QbD ............................................................................................................................. 48
3.2 Pharmaceutical applications ................................................................................................49
3.3 Hot melt extrusion ...............................................................................................................50
3.3.1 Introduction ................................................................................................................. 50
3.3.2 Solid dispersions .......................................................................................................... 51
3.3.3 CMA’s and CPP’s for hot melt extrusion......................................................................... 52
3.3.4 Downstream processing ............................................................................................... 54
3.3.5 PAT in hot melt extrusion .............................................................................................. 54
3.4 Continuous wet granulation: twin screw granulation ..............................................................54
3.4.1 Introduction ................................................................................................................. 54
3.4.2 Screw based granulation .............................................................................................. 55
3.4.3 PAT during wet granulation............................................................................................ 55
3.4.4 Granule Size Distribution (GSD) as a CQA ...................................................................... 55
3.4.5 Friability as a CQA ........................................................................................................ 57
3.4.6 PAT in wet granulation .................................................................................................. 57
4 Process Chemistry and API Manufacturing ............................................................................ 58
4.1 Need for process chemistry ..................................................................................................58
4.2 Process chemistry ...............................................................................................................58
4.2.1 Process chemistry ¹ medicinal chemistry ...................................................................... 58
4.2.2 API production cost ...................................................................................................... 59
,SV pharmaceutical manufacturing techniques 2024 – 2025
4.2.3 ICH guidelines on process equipment ........................................................................... 59
4.3 Reaction engineering and catalysis .......................................................................................60
4.3.1 Reaction engineering .................................................................................................... 60
4.4 Chemical reactor engineering ...............................................................................................62
4.4.1 Reactor engineering ..................................................................................................... 62
4.5 API separation and purification .............................................................................................64
4.5.1 API separation .............................................................................................................. 64
4.5.2 API purification............................................................................................................. 65
4.6 Click chemistry and biorthogonal chemistry ..........................................................................68
4.6.1 Click chemistry ............................................................................................................ 68
4.6.2 Biorthogonal chemistry................................................................................................. 69
5 3D Printing & Electrospinning ................................................................................................ 70
5.1 3D-printing ..........................................................................................................................70
5.1.1 What is 3D printing? ..................................................................................................... 70
5.1.2 3D printing technologies ............................................................................................... 71
5.1.3 Other biomedical applications of 3D printing ................................................................. 74
5.2 Electrospinning ....................................................................................................................74
5.2.1 What is electrospinning? .............................................................................................. 74
5.2.2 Parameters & variables ................................................................................................. 75
5.2.3 Porous fibers ................................................................................................................ 77
5.2.4 Drug delivery ................................................................................................................ 77
5.2.5 Tissue engineering ........................................................................................................ 78
5.3 Electrospraying ....................................................................................................................78
5.3.1 What is electrospraying? .............................................................................................. 78
5.4 Case study ..........................................................................................................................79
5.4.1 Flubendazole ............................................................................................................... 79
6 mRNA Lipid Nanoparticle Formulation .................................................................................. 80
6.1 mRNA LNP formulation characterization and activity testing ..................................................80
6.1.1 Dynamic light scattering (DLS) & field flow fractionation: techniques to measure particle
size 80
6.1.2 Electrophoretic mobility ............................................................................................... 83
6.1.3 Flow cytometry............................................................................................................. 84
6.1.4 Reporter proteins ......................................................................................................... 86
6.2 Microfluidic production ........................................................................................................87
6.2.1 What is microfluidics? .................................................................................................. 87
6.2.2 Microfluidic chips and devices ...................................................................................... 87
6.2.3 Microfluidic flow........................................................................................................... 87
6.2.4 Microfluidic emulsification ........................................................................................... 87
6.2.5 Microfluidic nanoprecipitation ...................................................................................... 89
6.3 mRNA LNP vaccines ............................................................................................................90
6.3.1 virus vector DNA and mRNA vaccines............................................................................ 90
6.3.2 mRNA LNP formulation ................................................................................................. 90
,SV pharmaceutical manufacturing techniques 2024 – 2025
1 Solid Phase Peptide Synthesis
Classical organic synthesis in solution
- Most cases: reagent A + reagent B à product AB
ð Classic method for conventional (simple) compounds
ð Possible through applying specific reactions and conditions: temperature, time, ratio,
solvent, catalyst, base…
- Complexity: chemists could make up to 100 compounds a year, however this was too little
when high throughput screening became a hot topic
ð Therefore, we needed high throughput synthesis!
Principle: synthesis of multiple different compounds at the same time.
ð Simultaneous preparation of a library (a.k.a. different compounds) at once, under
identical conditions.
« classical synthesis provides us with one compound at a time
Classical chemistry Combinatorial chemistry
Starting materials: Starting materials:
Reagent A i reagents A
Reagent B n reagents B
Reaction: A + B ® AB Reactions: A1 + B1 ® A1B1…
…Ai + Bn ® AiBn
Output: 1 product Output: i*n products
1.1.1 Combinatorial libraries
1.1.1.1 types of combinatorial libraries
Scaffold-based: libraries where the scaffold or core structure is always the same, only the “R”-
groups differ.
e.g. Passerini three-component reaction
Scaffold: the core structure or framework of a molecule, around which other chemical groups are
added.
ð This central framework is often responsible for the biological activity
ð Scaffold is like the “skeleton” on which functional groups or side chains “clothing” are
added.
Backbone-based: libraries where the compounds are related by a common backbone, which
always repeats itself.
e.g. Oligopeptides made from 20 different amino acids.
Backbone: the entire structure of a molecule, including both the scaffold and the attached
functional groups.
ð Considers the full molecule as a whole
, SV pharmaceutical manufacturing techniques 2024 – 2025
ð Allows the exploration of different complete molecular structures.
ð Backbone is more like “the entire outfit”
ð Different molecules with varying overall structures are included in the library, not just
variations around a common core.
Key Difference
- Focus: Scaffold-based libraries focus on a shared central framework with varying side
groups, while backbone-based libraries focus on complete, diverse molecular structures.
- Purpose: Scaffold-based libraries are used to systematically explore variations around a
common core, while backbone-based libraries are broader, aiming to maximize chemical
diversity.
1.1.1.2 size of combinatorial libraries
Few 10’s – 100’s – 1000’s of compounds
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠
= (# 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑠 𝑢𝑠𝑒𝑑 𝑝𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝)!"#$%& () &%*+,-(! .,%/.01
1.1.1.3 requirements
! Large collection of reactive, small and structurally different building blocks
! Synthesis:
o Fast
o Reproduceable
o Reliable
1.1.1.4 synthesis methods
Parallel synthesis: where multiple compounds are synthesized simultaneously in separate
reactions.
Split synthesis: where a single pool of reactants is split, reacted, and recombined iteratively1 to
generate a diverse library of compounds.
1.1.1.4.1 PARALLEL SYNTHESIS
“The easiest library synthesis.”
ð Each reaction vessel contains an individual reaction/individual compound.
ð Binding and activity screening is possible in solution and on-bead.
ð Automation is possible
Total individual reactions = number of end products * reaction steps
Number of end products = (number of reactions)^(number of building blocks in every step)
Step 1: well with solid support in each reaction vessel.
¢: solid support
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Step 2: couple A, B and C to the solid support
¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A ¢-A
1
Repeating cycles of splitting, reacting, and recombining multiple times to systematically build a diverse
library of compounds.