100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

MATHEMATICS FOR PHYSICAL SCIENCE AND ENGINEERING Symbolic Computing Applications in Maple and Mathematica Frank E.Harris

Rating
-
Sold
-
Pages
412
Grade
A+
Uploaded on
17-12-2024
Written in
2024/2025

MATHEMATICS FOR PHYSICAL SCIENCE AND ENGINEERING Symbolic Computing Applications in Maple and Mathematica Frank E.Harris

Institution
MATHEMATICS FOR PHYSICALB SCIENCE AND ENGINEERIN
Course
MATHEMATICS FOR PHYSICALB SCIENCE AND ENGINEERIN












Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
MATHEMATICS FOR PHYSICALB SCIENCE AND ENGINEERIN
Course
MATHEMATICS FOR PHYSICALB SCIENCE AND ENGINEERIN

Document information

Uploaded on
December 17, 2024
Number of pages
412
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

MATHEMATICS FORP B B




HYSICAL SCIENCE A B B




ND ENGINEERING
B




Symbolic Computing Applications in Maple and Mathematica
B B B B B B




Frank E. Harris
B B




INSTRUCTOR’SM
ANUAL
B

, Mathematics for Physical Science and Engineering: Symb
B B B B B B




olic Computing Applications in Maple and Mathematica
B B B B B B




Instructor’s Manual B




FrankB E.B Harris


UniversityBofBUtah,BSaltBLakeBBCity,BBUTB
andB UniversityB ofB Florida,B Gainesville,B F
L

,AcademicB PressB isB anB imprintB ofB Elsevier
225B WymanB Street,B Waltham,B MAB 02451,B USA
TheB Boulevard,B LangfordB Lane,B Kidlington,B Oxford,B OX5B 1GB,B UKBCopyri

ghtB ©B2014B ElsevierB Inc.B AllB rightsB reserved

NoB partB ofB thisB publicationB mayB beB reproduced,B storedB inB aB retrievalB systemB orB transmi
ttedBinBanyBformBorBbyBanyBmeansBelectronic,Bmechanical,Bphotocopying,BrecordingBorBotherw
iseBwithoutB theB priorB writtenB permissionB ofB theB publisher.

PermissionsB mayB beB soughtB directlyB fromB Elsevier’sB ScienceB &B TechnologyB RightsB Departm
entBinBOxford,BUK:Bphone+B(B44)B(0)B1865B843830;Bfax +B(B44)B(0)B1865B853333;Bemail:Bpermissi
yourB requestB onlineB byB visitingB theB Else
vierBwebBsiteBatBhttp://elsevier.com/locate/permissions,BandBselectingBObtainingBpermissionB
toBuseBElsevierB material.

Notice
NoBresponsibilityBisBassumedBbyBtheBpublisherBforBanyBinjuryBand/orBdamageBtoBpersonsBorBp
ropertyBasBaBmatterBofBproductsBliability,BnegligenceBorBotherwise,BorBfromBanyBuseBorBopera-
BtionB ofB anyB methods,B products,B instructionsB orB ideasB containedB inB theB materialB herein.



BritishBLibraryBCataloguingBinBPublicationBData
AB catalogueB recordB forB thisB bookB isB availableB fromB theB BritishB Library
LibraryBofBCongressBCataloging-in-PublicationBData
AB catalogB recordB forB thisB bookB isB availableB fromB theB LibraryB ofB Congress

ISBN:B978-0-12-801000-6

For information on all Academic Press publications
visit our web site at store.elsevier.com

PrintedB andB boundB inB USA
14B 15B 16B 17B 18BBBB 10B 9B 8B 7B 6B 5B 4B 3B 2B 1

,Contents

0 Introduction 1

1 Computers,BScience,BandBEngineering 3
1.1 Computing:B HistoricalB Note ................................................................................................3
1.2 BasicsB ofB SymbolicB Computing.........................................................................................3
1.3 SymbolicB ComputationB Programs ...................................................................................8
1.4 Procedures................................................................................................................................. 10
1.5 GraphsB andB Tables ............................................................................................................... 12
1.6 Summary:B SymbolicB Computing.................................................................................... 15

2 InfiniteBSeries 16
2.1 DefinitionB ofB Series.............................................................................................................. 16
2.2 TestsB forB Convergence ....................................................................................................... 18
2.3 AlternatingB Series ................................................................................................................. 20
2.4 OperationsB onB Series .......................................................................................................... 21
2.5 SeriesB ofB Functions .............................................................................................................. 22
2.6 BinomialB Theorem................................................................................................................ 26
2.7 SomeB ImportantB Series ..................................................................................................... 29
2.8 SomeB ApplicationsB ofB Series .......................................................................................... 29
2.9 BernoulliB Numbers............................................................................................................... 30
2.10 AsymptoticB Series ................................................................................................................. 32
2.11 Euler-MaclaurinB Formula ................................................................................................. 32

3 ComplexBNumbersBandBFunctions 35
3.1 Introduction ............................................................................................................................. 35
3.2 FunctionsB inB theB ComplexB Domain ............................................................................ 36
3.3 TheB ComplexB Plane .................................................................................................... 38
3.4 CircularB andB HyperbolicB Functions ............................................................................ 40
3.5 Multiple-ValuedB Functions ............................................................................................... 43

4 VectorsBandBMatrices 47
4.1 BasicsB ofB VectorB Algebra .................................................................................................. 47
4.2 DotB Product .............................................................................................................................. 50
4.3 SymbolicB Computing,B Vectors ............................................................................... 51

, ii CONTENTS


4.4 Matrices ............................................................................................................................................. 54
4.5 SymbolicB Computing,B Matrices ............................................................................................ 57
4.6 SystemsB ofB LinearB Equations................................................................................................ 61
4.7 Determinants .................................................................................................................................. 63
4.8 ApplicationsB ofB Determinants............................................................................................... 64

5 MatrixBTransformations 70
5.1 VectorsB inB RotatedB Systems .................................................................................................. 70
5.2 VectorsB underB CoordinateB Reflections ............................................................................ 72
5.3 TransformingB MatrixB Equations .......................................................................................... 72
5.4 Gram-SchmidtB Orthogonalization........................................................................................ 73
5.5 MatrixB EigenvalueB Problems ................................................................................................. 74
5.6 HermitianB EigenvalueB Problems ......................................................................................... 75
5.7 MatrixB Diagonalization.............................................................................................................. 75
5.8 MatrixB Invariants ......................................................................................................................... 77

6 MultidimensionalBProblems 79
6.1 PartialB Differentiation ............................................................................................................... 79
6.2 ExtremaB andB SaddleB Points ................................................................................................... 82
6.3 CurvilinearB CoordinateB Systems.......................................................................................... 83
6.4 MultipleB Integrals ........................................................................................................................ 85
6.5 LineB andB SurfaceB Integrals..................................................................................................... 88
6.6 RearrangementB ofB DoubleB Series ....................................................................................... 90
6.7 DiracB DeltaB Function ................................................................................................................. 91

7 VectorBAnalysis 93
7.1 VectorB Algebra............................................................................................................................... 93
7.2 VectorB DifferentialB Operators ............................................................................................... 99
7.3 VectorB DifferentialB Operators:B FurtherB Properties ................................................103
7.4 IntegralB Theorems .....................................................................................................................106
7.5 PotentialB Theory.........................................................................................................................108
7.6 VectorsB inB CurvilinearB Coordinates ................................................................................111

8 TensorBAnalysis 119
8.1 CartesianB Tensors ......................................................................................................................119
8.2 PseudotensorsB andB DualB Tensors ....................................................................................124
8.3 NonCartesianB Tensors .............................................................................................................125
8.4 SymbolicB Computation ............................................................................................................128

9 GammaBFunction 130
9.1 DefinitionB andB Properties .....................................................................................................130
9.2 DigammaB andB PolygammaB Functions ............................................................................132
9.3 Stirling’sB Formula ......................................................................................................................135
9.4 BetaB Function...............................................................................................................................136
9.5 ErrorB Function.............................................................................................................................140
9.6 ExponentialB Integral.................................................................................................................142

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Verifiedtestbanks Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
245
Member since
2 year
Number of followers
62
Documents
4537
Last sold
3 days ago
TEST BANKS AND ALL KINDS OF EXAMS SOLUTIONS

TESTBANKS, SOLUTION MANUALS & ALL EXAMS SHOP!!!! TOP 5_star RATED page offering the very best of study materials that guarantee Success in your studies. Latest, Top rated & Verified; Testbanks, Solution manuals & Exam Materials. You get value for your money, Satisfaction and best customer service!!! Buy without Doubt..

4.8

1037 reviews

5
928
4
71
3
24
2
9
1
5

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions